

Combined Heat And Power Production - Valuing Flexible Operation In An Uncertain Environment

Christoph Weber 15th European IAEE Conference Vienna, September 3, 2017

Motivation

- CHP: Combined Production of electricity and heat
- Traditionally used in countries with cold and moderate climate (e.g. Scandinavia, Netherlands, Austria, Eastern Europe, Germany)
- Combined efficiency higher than for electricity-only plant
- But heat forms also another restriction for the power plant operation
- Overall impact on profitability dependent on operation alternatives
- Coherent, as analytical as possible treatment looked for

CHP plant based on steam cycle

Related literature

- On the pricing of weather derivatives, e.g.
 - Acaton et al (2002)
- On stochastic optimization of CHP operation under uncertainty, e.g.
 - Woll, Weber (2006)
- On valuation of CHPs & Heat storage in the stochastic price framework, e.g.
 - Wottka (2016)
 - Kitapbayev, Moriarty, Mancarella (2015)
- On CHP plant investments as real options, e.g.
 - Wickmann; Madlener (2007)
 - Jouvet et al (2012)
 - Westner; Madlener (2012)
- Own contribution on valuation of operational flexibility
- Analytical insights on key drivers

10/4/2016

Introduction	1
Typology of CHP power plants and simple system configurations	2
Modelling heat demand & value of flexibility	3
Application	4
Final remarks	

Types of CHP power plants

Offen im Denken

Key distinction:

Fixed proportion of electricity relative to heat output

One degree of freedom

Heat restriction eventually strongly binding (notably little electricity production in summer)

Backpressure steam turbines, small-scale motor-based CHP,...

- λ:power-to-heat ratio
- Variable proportion of electricity to heat
 - Two degrees of freedom
 - > Heat restriction more flexible
 - Extraction-condensing steam turbines
 - > v: power loss coefficient

Types of CHP systems

Offen im Denken

- Broad range of different system configurations
- Very rarely only CHP units
- Usually combination with some (peaking) boilers
- Reasons:
 - Peak-load coverage in winter
 - Back-up for outages
 - Boilers less capital-intensive, advantageous for low full-load hours
 - Cheaper generation at low electricity prices
- Here focus on systems with one CHP plant and zero or one boiler

10/4/2016

Systems studied

- Only backpressure steam turbine
- Backpressure steam turbine + auxiliary heat boiler
- Only extraction-condensing turbine
- Extraction-condensing turbine + auxiliary heat boiler
- Conventional condensing plant + separate heating boiler

Introduction	1
Typology of CHP power plants and simple system configurations	2
Modelling heat demand & value of flexibility	3
Application	4
Final remarks	

- Heat demand is driven by the temperature
- Yet relationship is not linear: above a certain threshold, heating is no longer needed
- Heating demand as function of outside temperature:

Stochastic temperature modelling

Offen im Denken

- Based on model by Alaton et al.(2002)
- Seasonal temperature patterns described by sinusoidal function:

$$\theta_0(t) = \theta_m + \Theta \cdot \sin\left(\frac{2\pi}{T}t + \alpha\right)$$

Stochastic mean-reversion process around time-varying mean

$$\begin{split} d\vartheta &= \left(\frac{d\vartheta_0}{dt} + \kappa_{\vartheta}(\vartheta_0(t) - \vartheta)\right) dt + \sigma_{\vartheta} dW_{\vartheta} \\ &= \kappa_{\vartheta} \left(\vartheta_m + \Theta^{\sharp} \sin\left(2\pi \frac{t}{T} + \alpha^{\sharp}\right) - \vartheta\right) dt + \sigma_{\vartheta} dW_{\vartheta} \end{split}$$

Resulting (unconditional) expected heat demand:

$$\bar{Q}(t) = Q_0 + q \left(\bar{H} \Phi \left(\frac{\bar{H}}{\sigma_{\theta \infty}} \right) + \sigma_{\theta \infty} \Phi \left(\frac{\bar{H}}{\sigma_{\theta \infty}} \right) \right)$$

with:
$$\overline{H} = \vartheta_R - \vartheta_m - \Theta^{\#} \cdot \sin\left(2\pi \frac{t}{T} + \alpha^{\#}\right)$$

- Link power to heat: $P(t) = \lambda Q(t)$
- Revenue stream:

$$R(t) = \left(p(t)\lambda + p_Q - p_F \frac{1}{\eta_{th}}\right)Q(t)$$

Expected revenues

$$\bar{R}(t) = \left(\bar{p}(t)\lambda + p_Q - p_F \frac{1}{\eta_{th}}\right)\bar{Q}(t) + b\lambda Var[Q(t)]$$

With:
$$p(t) = \bar{p}(t) + b (Q(t) - E[Q(t)]) + v$$
, $\bar{m}(t) = \bar{p}(t)\lambda + p_Q - p_F \frac{1}{\eta_{th}}$

Annual Revenues:

$$R_Y^{BP} = \int_0^T \int_{\Omega(t)} \left((\overline{m}(t) + v)(\overline{Q}(t) + u) + b\lambda Var[Q(t)] \right) d\omega dt$$
$$= m_Y Q_Y + \int_0^T (b\lambda Var[Q(t)]) dt$$

Backpressure turbine plus heatboiler

Offen im Denken

Revenue stream:

$$R(t) = \max\left(\left(p(t)\lambda + p_Q - p_F \frac{1}{\eta_{th}}\right), p_Q - p_B \frac{1}{\eta_B}\right) Q(t)$$

Similar as before

$$\begin{split} R_{Y}^{BP\&HB} &= \int_{0}^{T} \int_{\Omega(t)} \left((\overline{m}'(t) + v) (\overline{Q}(t) + u) + b \lambda Var[Q(t)] \right) d\omega \, dt \\ &= m_{Y}' Q_{Y} + V_{Q,Y} \\ &= R_{Y}^{BP} + \frac{Q_{Y}}{T} \int_{0}^{T} \int_{-\infty}^{m_{HB} - \overline{m}(t)} (m_{HB} - \overline{m}(t) - v) f(v) dv \, dt \end{split}$$

With:
$$m_Y = \frac{1}{T} \int_0^T \overline{m}(t) dt$$
, $Q_Y = \int_0^T \overline{Q}(t) dt$
$$V_{Q,Y} = \int_0^T Var[Q(t)] dt$$

Choice sets depending on configuration

Offen im Denken

- Single backpressure turbine: only point BP
- Backpressure turbine & Heat boiler points BP & HB
- Single extraction-condensing turbine:points BP & EC
- Ext.-condensing turbine & Heat boiler
 points HB, BP, EC & C-HB
- Condensing turbine & Heat boiler points HB & C-HB

10/4/2016 14

Introduction	1
Typology of CHP power plants and simple system configurations	2
Modelling heat demand & value of flexibility	3
Application	4
Final remarks	

Case Study

- Power plant located at Düsseldorf, Germany
- Heat demand driven by local temperature
 - Share of temperature-independent demand: 0.1
- Prices taken from observed prices 2015
 - Avoids specifying stochastic processes
 - Valid results since focus on impact of flexibility
- No impact of temperature resp. heat demand on prices considered
 - Actual impact rather weak (0,2 EUR/MWh per °C) and hardly significant
 - Explanation: power plant revisions shifted to low demand seasons

Case Study – Parameter choices

Offen im Denken

Key system and power plant parameters

Efficiency boiler	eta_Boiler	0.8
Fuel price for boiler	p_Boiler	24
Fuel price for power plant	p_Fuel	20
Marginal efficiency electricity production	eta_elm	0.56
Power-to-heat ratio	lambda	1.2
Power loss coefficient	nu	0.2
Thermal efficiency power plant in backpressure mode	eta_th	0.4
Overall efficiency in backpressure mode	eta_ges_BP	0.88
Maximum Power output	P_max	100
Maximum Heat extraction	Q_max	71.4
Ratio Maximum Heat CHP to theoretical heat demand at		
T_min	r_CHP	0.8
Share of temperature-independent heat max heat	s_Base	0.1
Minimum reference temperature	T_min	-10
Heat price	P_Heat	30

10/4/2016

17

Case study results

Average margin in EUR/kW_{th,inst}

Only BP	BP & HB	Only EC	EC & HB	C & HB
51.50	54.17	76.01	78.67	38.60

- Additional value of a boiler is limited
- > Additional value of extraction operation is much higher
- Pure condensing power plant + separate heat boiler is performing worse than other configurations

10/4/2016

18

- Marginal costs of heat provision:
- correspond to: $c_{m,Q}(t) = -\frac{dR_0(t)}{dQ}$

with
$$R_0(t) = R(t) - p_Q Q(t)$$

10/4/2016

19

Conclusions

- CHP plants provide a means for heat and electricity production at high energy efficiency
- With (increasingly) volatile electricity prices, flexibility in heat provision becomes valuable
- The methodology developed allows to assess systematically the value of flexibility in combined heat & power production
- In the case study, especially the flexibility provided by extractioncondensing turbines turns out to be valuable

Thank you for your attention

Christoph Weber

Christoph.weber@uni-due.de +49 201/183-2399

