Optimal Electricity Generation Portfolios in the Presence of Fuel Price and Availability Risks

Magda Mirescu

University of Vienna and Vienna University of Technology

September 6, 2017

Why Look Into Electricity Generation?

- Europe-Wide: considerable national and supranational measures for the composition of national electricity generation portfolios (announced or partially implemented already):
 - Nuclear Phase-Out: Italy, Germany, Belgium, Switzerland etc.
 - Subsidies: wind, solar, biomass, combined heat and power plants/systems
 - Targets: 27% renewables by 2030
- Climate Change: ecological motivation or pressure factor
 - o CO2-Emissions: caused by fossil energy
 - Pricing of Emissions: CO₂ European Emission Allowances
- Worldwide: projected growing demand
- ⇒ What is an optimal electricity generation portfolio?

What is the Setting?

General (Research) Assumptions

- national decision maker
- economical decision criteria with technical considerations
- several technologies available:
 - thermal and
 - renewable → wind
- each technology type has both advantages and disadvantages
 - o thermal: dispatchable but
 - dirty and dependent on variable input prices
 - o renewable: clean but
 - non-dispatchable and with variable availability

What is the Research Question?

Question to Be Answered in This Presentation

What does a cost-optimal electricity generation portfolio consist of, if the decision-maker were to take into account:

- volatility of input prices,
- volatility of (wind) availability and with that coupled higher system costs?

How to Tackle the Research Question?

Portfolio Optimization

The process of choosing the proportions of various assets to be held in a portfolio in such a way as to make the portfolio better than any other according to some criterion.

Distinction Finance - Electricity Economics

- ▶ input: return
- ▶ weights: + und −
- problem:

$$\max_{w} \quad w^{\top} \mu - \frac{\beta}{2} w^{\top} \Sigma w$$
s.t. $e^{\top} w = 1$.

- input: LCOE or CF
- ▶ weights: +
- problem:

$$\begin{aligned} & \min_{w} & w^{\top} \mu + \frac{\beta}{2} w^{\top} \Sigma w \\ & \text{s.t.} & e^{\top} w = 1, \\ & w > 0. \end{aligned}$$

DataOverview

▶ Cost Structure:

IC, FOM, VOM, *Fuel Costs*, Additional System Costs → Germany

- Additional System Costs:
 - Balancing Costs: short-term operational costs a system incurs through output variability and uncertainty.
 - Capacity Costs: costs associated with the required capacity that enables a system to provide system reliability at any time.
- ► Availability Factors: wind speeds → Germany

Data Input Costs

Evolution of the Input Prices in Germany (January 1999 - May 2017)

System Costs

Balancing Costs Assumptions (Reliability Costs Identical)

▶ linear or quadratic growth in the share of wind generation.

Additional Balancing Costs via Wind Integration

Wind Availability - Part 1

Wind Availability - Part 2

Kernel Density Estimation at Different Locations in Germany

Wind Availability - Part 3

Kernel Density Estimation at Different Locations in Germany

Wind Availability - Part 4

Load and Load Duration Curve - Part 1

Load and Load Duration Curve - Part 2

$$\begin{split} & \min_{\ell_n} & \sum_{n=1}^N (\ell_n - \ell_{n-1}) D(\ell_{n-1}) - \int_{\ell_{n-1}}^{\ell_n} D(l) \mathrm{d}l \\ & \text{s.t.} \int_{\ell_{n-1}}^{\ell_n} D(l) \mathrm{d}l \approx \sum_{n=1}^N (\ell_n - \ell_{n-1}) \frac{D(\ell_{n-1}) + D(\ell_n)}{2} \\ & \ell_0 = 0 \leq \ \ell_n \leq 1 = \ell_N, \end{split}$$

Empirical LDC, Its Polynomial Estimate and Optimally Discretized Blocks - Germany 2015

Load and Load Duration Curve - Part 3

Mathematical Optimization Model

$$\min_{x_{i,j}, i \in I, j \in J} \quad \mathbb{E} \big[\mathbf{c}^{LCOE} \big] + \frac{\beta}{2} \mathbb{V} \mathrm{ar} \big[\mathbf{c}^{LCOE} \big]$$

$$\text{s.t.}\underbrace{\left(\begin{array}{cccc} x_{1,1} & \dots & x_{1,J-1} & x_{1,J} \\ \vdots & \ddots & \vdots & \vdots \\ x_{I,1} & \dots & x_{I,J-1} & x_{I,J} \end{array}\right)}_{X} \left(\begin{array}{c} 1 \\ \vdots \\ \mathbb{E}[A(s)] \end{array}\right) = \left(\begin{array}{c} \ell_N D(\ell_{N-1}) \\ \vdots \\ \ell_1(D_{max} - D(\ell_1)) \end{array}\right)$$

$$X \geq 0,$$

- ► I... = 3 number of load blocks
 - base, intermediate, peak
- $J \dots = 4$ number of technologies
 - o thermal: coal, gas, nuclear
 - o renewable: wind
- $x_{i,i} \in X$
 - electricity generation load block i with technology j
 - decision variable

- consideration of the load via the Load Duration Curve (LDC)
- 2 random variables
 - \circ $A\dots$ availability factor wind
 - \circ $C^{\mathsf{Fuel}}\dots\mathsf{input}\,\mathsf{prices}$
- system costs function f(AXW)
 - none
 - o linear in share of wind generation

Results

Without the Consideration of System Costs

- ► Gas: due to low CF and volatile input costs \rightarrow peak load for high β
- ▶ Coal: lower volatility than gas \rightarrow replaced by wind for high β (base load)
- Nuclear: too expensive to be a part of the portfolio
- Wind: covers base load only

Results

With the Consideration of System Costs

- Gas: unchanged
- Coal: slightly more
- Nuclear: additional diversification mean → base and intermediate load
- Wind: clearly less → base load only

Conclusion

- A simultaneous consideration of both risk factors appears to be indispensable.
- The diversification effect of wind is
 - overestimated, without considering system costs
 - o smaller, with the consideration of system costs.
- ► The consideration of system costs leads to a non-linear, non-quadratic optimization problem → curse of dimensionality.
 - $\Rightarrow \exists$ trade-off between precision and solvability.

Outlook

- Find a better algorithm to compute the solutions.
- Add several technologies:
 - o hydro,
 - o solar,
 - o lignite.
- Think of a way of modeling the intermittency problem.
- Implement a higher degree system costs function.

Thank You for Your Attention!

Dipl.-Ing. Magda Mirescu

PhD Student

Vienna University of Technology

Faculty of Mathematics and Geoinformation

Research Group Operations Research and Control Systems (ORCOS)

Wiedner Hauptstraße 8, 1040 Wien

Research and Teaching Assistent

University of Vienna

Faculty of Business, Economics and Statistics

Chair of Industry, Energy und Environment (IEE)

Oskar-Morgenstern-Platz 1, 1090 Wien

magda.mirescu@univie.ac.at