

Policy measures targeting a more integrated gas market: impact on prices and arbitrages

Ekaterina Dukhanina, MINES ParisTech François Lévêque, MINES ParisTech Olivier Massol, IFP School & City University of London

Introduction

Context:

- An integrated market improves possibility to forecast and can preserve the market from disturbances and reinforce the security of supply
- In order to achieve an integrated gas market policy makers need to find efficient measures aiming at an increase in liquidity on gas trading hubs

Goal of the paper:

- To analyse the efficiency of a policy targeting a more integrated gas market

Motivation:

- French case offers an example of such policy
- The efficiency of this policy has not been evaluated yet
- According to European initiatives to create an integrated, efficient and liquid gas market further mergers of trading zones are proposed

• Question:

 Whether the merger of two zones has helped to get a more integrated and efficient gas market?

French case: gas markets after liberalization

Gas balancing zones:

- Entry-exit system for gas transmission tariffs based on division into balancing zones
- The number of zones has been gradually reduced after a series of mergers

 Since April 2015: 2 gas trading regions: North & South

Gas & LNG supply (TWh)

Literature

Historical definition of integration:

 Two geographical markets for a tradable good are integrated if the price difference between these two markets equals the unit transportation cost

Empirical approach:

- Interrelations between prices in different locations:
 - co-movements, correlation, Granger causality (Doane & Spulber, 1994),
 - cointegration (De Vany & Walls,1993; Serletis,1997; Asche et al., 2002, 2013 and Siliverstovs et al., 2005),
 - stationarity of pairwise price differentials (Cuddington & Wang, 2006),
 - short term and long term relations (Park et al., 2008; Brown & Yücel, 2008; Schultz & Swieringa, 2013; Olsen et al., 2015)
 - Kalman filter approach and time varying degree of price convergence (King & Cuc,1996; Neumann et al., 2006; Neumann, 2009 and Renou-Maissant 2012),

Spatial equilibrium approach:

- Spatial efficiency of the market: in equilibrium all arbitrage opportunities are being exploited
 - Spatial equilibrium theory (Enke, 1951; Samuelson, 1952; Takayama & Judge, 1971 and Harker, 1986)
 - Parity bounds model with arbitrage equilibrium, autarchic and barriers to trade regimes
 (Spiller & Huang, 1985; Sexton, Kling & Carman, 1991; Barrett & Li, 2002; Negassa & Myers, 2007; Massol & Banal-Estañol, 2016)

Methods

Spatial equilibrium model :

- Parity bounds model with policy dummies which estimates probabilities (by maximum likelihood method) to be in one of three trade regimes:
 - Spatial equilibrium with zero arbitrage rent (R = 0): $\Delta P_{ijt} C_{ijt} = e_t$
 - Barriers to trade with positive arbitrage rent (R > 0): $\Delta P_{ijt} C_{ijt} = e_t + u_t$
 - Autarchic with negative arbitrage rent (R < 0) : $\Delta P_{ijt} C_{ijt} = e_t u_t$
- Where $R_t = \Delta P_{ijt} C_{ijt}$ represents marginal rent from arbitrage (price spread net of transportation costs), e_t is a random shock, assumed to be normally distributed with zero mean and standard deviation σ_e and u_t is non-negatively valued random variable assumed to be half-normal and distributed independently from e_t with standard deviation σ_u
- Ex-post assignment of the regime for each observation in order to analyse the relation between the regimes and the infrastructure use

Results

Data:

- End of the day price spread
- Study period: July 2011 February 2017

Parity bounds model estimation:

Period	Before zone merger			After zone merger		
Parameters	λ1	λ2	λ3	γ1	γ2	γ3
Regime	R=0	R>0	R<0	R=0	R>0	R<0
Probability	0,55	0,40	0,05	0,92	0,07	0,01
Z statistics	26,89	16,14	6,12	72,86	5,33	2,59

- Higher probability to observe the spatial equilibrium regime (market became more spatially efficient)
- Reduced probability of the regime "barriers to trade" (less unexploited arbitrage opportunities observed after the policy)
- Decrease in probability to be in the autarchic regime (decrease in trade when the trade is not profitable)

Relation between the regimes and infrastructure load

Before the policy:

Pipeline fully loaded in autarchic, not fully loaded in barriers to trade and equilibrium regimes

• After the policy:

- Lower load in autarchic, fully loaded in 'barriers to trade', higher load in equilibrium regimes
- Signs of increased liquidity
- Improvement in the efficiency of the infrastructure use

Conclusions

- The study allowed us to estimate the efficiency of a policy measure targeting a more integrated gas market using spatial equilibrium framework.
- A parity bounds model is applied to measure the impact on spatial efficiency of the market of a policy decision to merge two gas trading zones in the South of France.
- The model shows increased market integration and improved market efficiency after the policy implementation.
- The analysis of the infrastructure load rate indicates an increase in liquidity on the market and an improvement in the efficiency of the infrastructure use.

THANK YOU!