

NORWAY AS A FLEXIBILITY PROVIDER FOR A LOW-CARBON EUROPEAN ENERGY SYSTEM

Christian Skar

Department of Industrial Economics and Technology Management Norwegian University of Science and Technology (NTNU)

Co-authors: Kjetil Midthun (SINTEF Technology and Society)
Asgeir Tomasgard (NTNU)

15th IAEE European Conference 2017, Vienna, Austria, 06.09.2017

WWW.IAEE.ORG

BACKDROP: EUROPEAN DECARBONIZATION

Source: European Commission. (2011). A Roadmap for moving to a competitive low carbon economy in 2050. *Communication from The Commission to The European Parliament, The Council, The European Economic and Social Committee and The Committee of The Regions, COM*(2011).

Norway as a flexibility provider for a low-carbon European energy system

- Techno-economic study of the transistion to a low-carbon European power sector
- Look at mix of low-carbon technologies, interconnector expansions and use of energy storage
- Focus on Norwegian results
 - Optimal expansion of interconnectors
 - Power exchange
 - Use of natural gas for power generation in countries to which Norway exports

Nordic power system

- Norway
- Annual production: 138 TWh (>95% hydropower)
- Reservoir capacity 85 TWh
- Largest reservoir 8 TWh
- Between 5 and 11 TWh surplus
- Cabels to the Denmark and the Netherlands (Germany and UK cables are under way)

Source: Olje- og energidepartementet. (2016). *Meld. St. 25* (2015–2016) - *Kraft til endring* — *Energipolitikken mot 2030* (Vol. 25).

Norwegian natural gas trade (2015)

First delivery country	Share of total
France	15.1 %
UK	24.5 %
Germany	42.3 %
Belgium	12.3 %
LNG	5.3 %

Norway is the 3rd largest exporter of natural gas and supplies about 25 % of the European gas demand (2016)

Source: Norwegian Petroleum
Directorate, Gassco

Co-optimization of strategic and operational decisions

Optimal dispatch for a number of representative 48-hour blocks

European Model for Power system Investment with (high shares of) Renewable Energy (EMPIRE)

Multi-horizon Stochastic Program

- Long-term dynamics (multi-period investments)
- Short-term dynamics (multi-period operation)
- Short-term uncertainty

Modeling assumptions

- Perfect competition (system cost minimization formulation)
- Inelastic demand
- Generation capacity aggregated per technology (i.e. do not model individual plants)
- Investments are continuous
- Lines are independent (i.e. transportation network)
- Perfect foresight about fuel prices, carbon price, and load development.

Assumptions

European demand for electricity [TWh/an]

EU reference scenario 2016

Fuel Prices [€2010/GJ]

IEA Energy Technology Perspective 2016

- IEA ETP 2016 2DS Coal

-EU ref 2016 N Gas

- IEA ETP 2016 2DS N Gas

Scenario assumptions

- 1. Baseline decarbonization: 90 % emission reduction from 2010 to 2050
 - Nuclear capacities limited to the ENTSO-E vision
 1&2 (medium nuclear) scenarios in the 2016 Ten Year
 Development Plan (TYDP) .
 - ii. Grid expansion towards 2020 fixed to ENTSO-E's 2016 TYDP reference capacities.
 - i. Beyond 2020: expansion limit of 4 GW for each interconnector every five year period
 - iii. Development of Norwegian hydro power predefined
 - iv. Renewable electricity generation targets set for Germany, France, Spain and the UK.
 - v. Wind onshore capacity potential from IEA's NETP 2016
- 2. Alternative scenario NoCCS: same as baseline but no carbon capture and storage available

Baseline scenario: 90 % emission reduction

31 (2%)

169 (11%)

Coal (unabated)

Natural gas (unabated)

18 (0%)

111 (3%)

NoCCS scenario: 90 % emission reduction

Transmission

2010

Baseline 2050

NoCCS 2050

Baseline

European cross-boarder interconnector expansion: capacity increases by 370 % from 2010 to 2050

NoCCS

Capacity increases by 640 % from 2010 to 2050

Norwegian power system 2050

Type	Baseline [TWh]	NoCCS [TWh]
Demand	152	152
Production	206	265
Reservoir hydro	117	118
Run-of-the-river hydro	33	32
Onshore wind	56	55
Offshore wind		59
Export	74	144
Import	21	33
Net export	53	111

Cen SES

Centre for Sustainable Energy Studies

Norway interconnectors

Inteconnector [MW]	2020 (ENTSO-E TYNDP 2016)	Baseline 2050	NoCCS 2050
Sweden	4 000	6 300	14 600
Denmark	1 600	4 200	6 700
Finland	100	4 600	3 900
Germany	1 400	1 400	1 400
Great Britain	1 400	1 400	4 200
Netherlands	700	700	7 600
Total	9 200	18 600	38 400

Baseline summer/autumn [MWh/h]

NoCCS winter/spring [MWh/h]

NoCCS summer/autumn [MWh/h]

Daily operation of natural gas power generation in 2050

Summary and conclusions

- Availability of CCS has a great impact on the optimal generation technology mix in Europe
 - With CCS: substantial amounts of onshore wind, and coal with CCS
 - Without CCS: large amounts of wind and solar PV, some unabated natural gas for balancing
- Deployment of wind and solar at this scale requires a strong transmission grid
 - Especially when CCS is not available our results indicate a doubling of interconnector capacity in the optimal system design from the Baseline to the NoCCS scenario
- Norwegian (reservoir) hydropower is an efficient source of flexible generation
 - If large amounts of solar PV is built across Europe Norway can absorb the peak generation during mid-day and export power outside these hours
- Without CCS Norway can play an even larger role in decarbonizing European power
 - Expansion of offshore wind → potential to further increase export of renewable electricity
 - This is conditioned on increased interconnector exchange capacity with continental Europe and Great Britain
- The natural gas infrastructure has to be able to deliver fuel for a highly fluctuating operation.

Thank you!

Kontakt: christian.skar@ntnu.no

Web: http://www.ntnu.edu/employees/christian.skar

