The Cannibalization Effect of Wind and Solar in the California Wholesale Electricity Market

Javier López Prol*[^], Karl W. Steininger[^], David Zilberman[']

*DK Climate Change

^Wegener Center for Climate and Global Change, University of Graz, Austria 'Agricultural and Resource Economics, University of California Berkeley, USA

September 2017

Outline

- ► The rise of variable renewables
- ▶ The merit order and the cannibalization effect
- Absolute and relative cannibalization effect
- Conclusions
- ► Further research: demand and supply side cannibalization effect

The rise of variable renewables in California

Figure 1: Smoothed daily solar and wind penetration

The merit-order effect

Renewable energies pressure down electricity prices

Figure 2: The merit order effect. Source: CLEW 2016

The cannibalization effect

The higher solar/wind electricity penetration, the lower its value

▶ Absolute cannibalization: (solar) daily unit revenues (p_d^s) :

$$ho_d^s = rac{\sum_{t=1}^{24}
ho_t q_t^s}{\sum_{t=1}^{24} q_t^s}$$

▶ Relative cannibalization: value factor (VF): unit revenue (p_d^s) divided by daily avg. wholesale price $(\overline{p_d})$

$$VF_d^s = \frac{p_d^s}{p_d} = \frac{\frac{\sum_{t=1}^{24} p_t q_t^s}{\sum_{t=1}^{24} q_t^s}}{\frac{\sum_{t=1}^{24} p_t}{24}}$$

Unit revenue and value factor visualized

$$VF_d > 1 \Leftrightarrow p_d^s > \overline{p_d}$$

Figure 3: Calculation of daily value factors from hourly data

Modeling the cannibalization effect

Absolute:

$$p_d^s = \alpha + \beta_1 q_d^s + \beta_2 q_d^w + \beta_3 p_d^g + \beta_4 d_d + \gamma' D_d + \epsilon_d$$

► Relative:

$$VF_d^s = \alpha + \beta_1(q_d^s/d_d) + \beta_2(q_d^w/d_d) + \beta_3p_d^g + \gamma'D_d + \epsilon_d$$

$$q = quantity; d = demand; p = price; D = vector of time dummies$$
 $s : solar; w : wind; g : gas$

Absolute cannibalization: Unit Revenues

Figure 4: Daily solar and wind unit revenues

Electricity prices

Figure 5: Daily electricity prices

Relative cannibalization: Value Factors

Figure 6: Wind and solar Value Factors descriptive statistics over time

Relative cannibalization: Value Factors

Figure 7: Solar and wind cannibalization effect

Implications for PV competitiveness

Value-adjusted PV LCOE = LCOE/VF

Figure 8: PV cannibalization and competitiveness

Conclusions

- Increasing generation tends to lower the unit revenues of both solar and wind
- Increasing penetration rapidly undermines the value of solar
- Increasing penetration increases the variability of the solar value factor
- ► The value factor of wind, however, seems to be insensitive to its penetration
- ► The cannibalization effect could jeopardize PV competitiveness. Mitigation?
 - Market structure
 - Storage options
 - Interconnections

Further research: supply vs. demand-side cannibalization

How to disentangle demand-side (distributed self-consumption PV) from supply-side (centralized utility-scale) cannibalization?

- ► Estimate demand-side generation from installed capacity
- And then re-estimate the model as

$$VF_{d}^{s} = \alpha + \beta_{1}[(q_{d}^{ss} + q_{d}^{sd})/(d_{d} + q_{d}^{sd})] + \beta_{2}[q_{d}^{w}/(d_{d} + q_{d}^{sd})] + \beta_{3}p_{d}^{g} + \gamma'D_{d} + \epsilon_{d}$$

 q_d^{sd} : daily quantity solar demand-side (distributed) q_d^{ss} : daily quantity solar supply-side (centralized)

Thank you

Javier López Prol

javier.lopez-prol@uni-graz.at

Wegener Center for Climate and Global Change DK Climate Change, University of Graz, Austria

Figure 9: that's me

US electricity system

Figure 10: US interconnections

US electricity system

Figure 11: US electricity markets. Source: FERC

Appendix Solar power in California

Figure 12: PV penetration. Source: IEA

Appendix Solar power in California

Figure 13: Installed capacity. Source: SEIA and EIA

Appendix: California electricity mix

Figure 14: California electriciy mix, 2011 - 2016. Source: IEA

Appendix: Actual vs. forecasted demand

Figure 15: Demand forecast error

Appendix: Actual vs. forecasted generation

 $Figure\ 16:\ Generation\ forecast\ error$