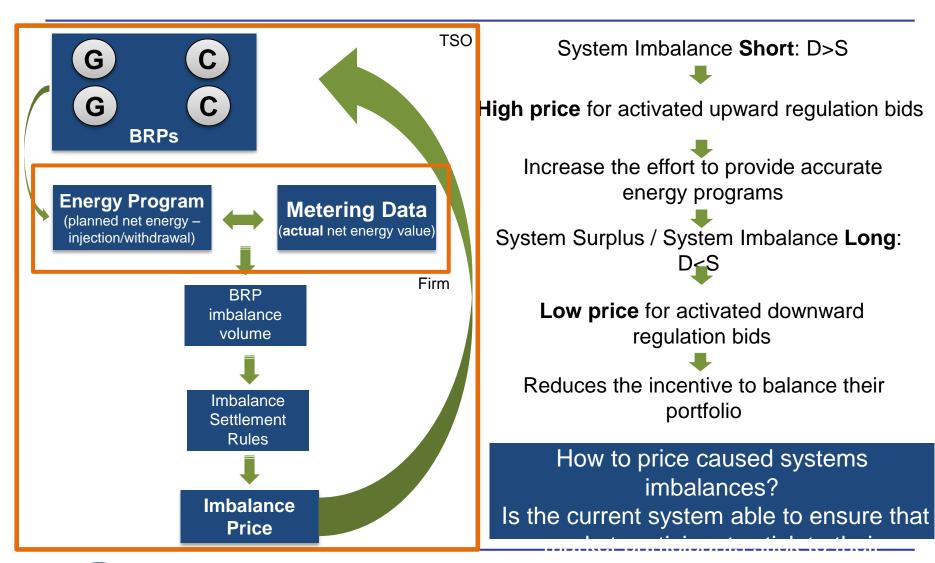

Swiss Competence Centers for Energy Research Competence Center for Research in Energy, Society and Transition

Wirtschaftswissenschaftliche Fakultät **WWZ**

FoNEW

Forschungsstelle für Nachhaltige Energieund Wasserversorgung



Outline

- 1. Motivation
- 2. Imbalance Settlement Designs
- 3. Model Framework
- 4. Conclusion

Motivation – Why do we need balancing?

FoNEW

Methodology

Imbalance Designs

Review on Imbalance Settlements in Europe

Firm Behavior Bid strategy given imbalance prices

TSO Behavior How TSO respond to Firm's behavior setting the imbalance prices

Imbalance Rules • Expand the models to include different imbalance rules

Numerical Simulation Numerical simulation applied to different countries

Agenda

- 1. Motivation
- 2. Imbalance Settlement Designs
- 3. Model Framework
- 4. Conclusion

Imbalance Settlement Designs in Europe

Country	Pricing based on	Mechanism	Symmetric/ asymmetric	Settlement time unit
Austria	Total costs	One-price	-	15 min.
Belgium	Marginal prices	Two-price	Symmetric	15 min.
Denmark	Marginal prices	Two-price (production) One-price (consumption)	Symmetric	15 min.
France	Marginal prices	Two-price	Symmetric	30 min.
Germany	Total costs	One-price	-	15 min.
Italy	Marginal prices	One-price (small BRP) Two-price (big BRP)	Symmetric	60 min.
Spain	Marginal prices	Two-price	Symmetric	60 min.
Switzerland	Marginal prices	Two-price	Asymmetric	15 min.
The Netherlands	Marginal prices	Two-price	Symmetric	15 min.

Papageorgiou, et al. (2016)

- Different imbalance settlements lead to different market behaviours and balancing market performances.
- Particular importance if governance, energy regulators and TSOs aim to integrate different balancing markets.

One-Price vs Two-Price System

One-Price System

		System Imbalance	
		Negative (Short)	Positive (long)
BRP Imbalance	Negative (Short)	$+MP_u$	$+MP_d$
	Positive (long)	$-MP_u$	$-MP_d$

 MP_u = marginal price of upward regulation; MP_d = marginal price of downward regulation.

Two-Price System

		System Imbalance		
		Negative (Short)	Positive (long)	
BRP Imbalance	Negative (Short)	$+AP_u*(1+penalty_u)$	$+P_{DA}$	
	Positive (long)	$-P_{DA}$	$-AP_d/(1+penalty_d)$	

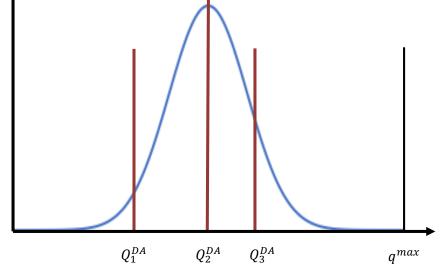
 AP_u = average price of upward regulation; AP_d = average price of downward regulation; P_{DA} = day-ahead power exchange price.

WWZ

FoNEW

Agenda

- 1. Motivation
- 2. Imbalance Settlement Designs
- 3. Model Framework
- 4. Conclusion


Assumptions

- Follow methodology presented in Zhan, et.al. (2012).
- Relation between SI and BRPI is not consider.
- RES producer with zero marginal costs. $E(q^r)$
- Realization: $q^r \sim \aleph^T(\bar{\mu}, \bar{\sigma}, 0, q^{max}; q^r)$
- Imbalance Costs:

$$I = \begin{cases} p^{IB-}(Q^{DA} - q^r), & Q^{DA} \ge q^r \\ p^{IB+}(q^r - Q^{DA}), & Q^{DA} < q^r \end{cases}$$

- CASE 1: $0 \le p^{IB+} \le p^{DA} \le p^{IB-}$
- CASE 2: $p^{IB+} \le 0 \le p^{DA} \le p^{IB-}$
- CASE 3: $p^{IB-} \le 0 \le p^{DA} \le p^{IB+}$

Two-Price System: RES Producer

$$\max_{Q^{DA}} \ p^{DA}Q^{DA} - p^{IB} - \int_{0}^{Q^{DA}} (Q^{DA} - q^{r})\psi(q^{r})dq^{r} + p^{IB} + \int_{Q^{DA}}^{q^{max}} (q^{r} - Q^{DA})\psi(q^{r})dq^{r}$$
$$s.t. \ 0 \le Q^{DA} \le q^{max}$$

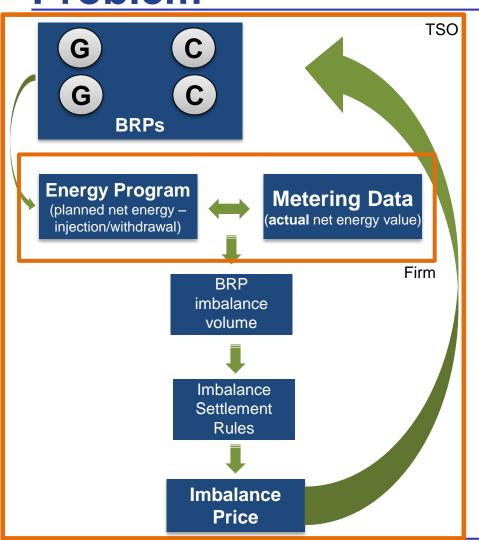
• FOC:
$$p^{IB-} \int_0^{Q^{DA}} \psi(q^r) dq^r + p^{IB+} \int_{Q^{DA}}^{q^{max}} \psi(q^r) dq^r + \lambda \ge p^{DA} \perp Q^{DA} \ge 0$$
$$q^{max} \ge Q^{DA} \perp \lambda \ge 0$$

Solutions			
Q^{DA*} ϵ $[0,q^{max}]$, $p^{IB+}=p^{DA}=p^{IB-}$			
$0 \leq p^{IB+} \leq p^{DA} \leq p^{IB-}$	$p^{IB+} \leq 0 \leq p^{DA} \leq p^{IB-}$	$p^{IB-} \leq 0 \leq p^{DA} \leq p^{IB+}$	
$Q^{DA*} = \Psi^{-1} \left(\frac{p^{DA} - p^{IB+}}{p^{IB-} - p^{IB+}} \right), p^{IB+} < p^{DA} < p^{IB-}$	$Q^{DA*} = \Psi^{-1} \left(\frac{p^{DA} + p^{IB+}}{p^{IB-} + p^{IB+}} \right), -p^{IB+} < p^{DA} < p^{IB-}$	$Q^{DA*} = \Psi^{-1} \left(\frac{p^{IB+} - p^{DA}}{p^{IB-} + p^{IB+}} \right) \text{, } -p^{IB-} < p^{DA} < p^{IB+}$	

where, $\Psi^{-1}(\bar{\mu}, \bar{\sigma}, 0, q^{max}; p) = \Phi^{-1}(\bar{\mu}, \bar{\sigma}^2; \Phi(\bar{\mu}, \bar{\sigma}^2; 0) + p. (\Phi(\bar{\mu}, \bar{\sigma}^2; q^{max}) - \Phi(\bar{\mu}, \bar{\sigma}^2; 0)))$

Two-Price System: RES Producer

	$0 \le p^{IB+} \le p^{DA} \le p^{IB-}$	$p^{IB+} \leq 0 \leq p^{DA} \leq p^{IB-}$	$p^{IB-} \leq 0 \leq p^{DA} \leq p^{IB+}$
p^{IB+}	1	-1	5
p^{DA}	3	3	3
p^{IB-}	5	5	-1
Q^{DA*}	50	54	46
p^{IB+}	4	-2	18
p^{DA}	10	10	10
p^{IB-}	18	18	-2
Q^{DA*}	48	53	47
p^{IB+}	1	-1,3	1,8
p^{DA}	1,5	1,5	1,5
p^{IB-}	1,8	1,8	-1,3
Q^{DA*}	53	63	37


Example:

- Capacity = 100 MW
- Mean = 50
- Std. Deviation = 10
- Case 1: results depend on the spread between imbalance prices and DA prices.
- Case 2: firms bid more energy in the DA market, increasing the probability of being short in the imbalance market.
- Case 3: firms bid less energy in the DA market, increasing the probability of being long in the imbalance market.

WZ

Model Framework: System Operator Problem

$$\min_{p^{IB-},p^{IB+}} E \big[\mathsf{C}^- \big(Q^{DA} - q^r \big) |_{Q^{DA} \geq q^r} \big] + E \big[\mathsf{C}^+ \big(q^r - Q^{DA} \big) |_{Q^{DA} < q^r} \big]$$

$$s.t. \qquad E\big[p^{IB-}|_{Q^{DA} \geq q^r}\big] + E\big[p^{IB+}|_{Q^{DA} < q^r}\big] + \lambda \geq p^{DA}$$

Agenda

- 1. Motivation
- 2. Imbalance Settlement Designs
- 3. Model Framework
- 4. Conclusion

Conclusions

 Is there an incentive to deviate from our generation expectations, or specifically, from the generation expected value?

YES, there is!

- The optimal bid in the DA market depends on the relation between DA price imbalance prices, as well as, the properties of the probability distribution function.
- RES producer will bid in the market if the expected imbalance prices are sufficient high in relation to DA price to cover imbalance costs.

Next Steps

- Expand the model to the TSO Cost Minimization Problem.
- Refine the model to include system imbalance layer.
- Comparison between different countries regarding imbalance price settlements.

Swiss Competence Centers for Energy Research Competence Center for Research in Energy, Society and Transition

Wirtschaftswissenschaftliche Fakultät WWZ

FoNEW
Forschungsstelle für
Nachhaltige Energieund Wasserversorgung

Carla Mendes

PhD Candidate

Chair of Environmental and Energy Economics carla.mendes@unibas.ch