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Introduction

▪ Need for efficient and competitive district heating systems (DHS)

▪ Tools:

▪ Lower costs of production 

▪ Reduce environmental emissions

▪ Enhance reliability

▪ Possible mechanism for improvements in energy efficiency and production planning:

▪ Forecasting techniques 
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Introduction

▪ Prediction of thermal load plays a vital role in the net income and short-term operation 

planning of DHS and cogeneration units.

▪ For large CHP and DHS operators, the implementation of advanced methods has led to 

better day-ahead generation planning. Lowering costs of electricity and heat production, 

hence increasing profits.
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Introduction

▪ For some DHS and independent power producers (cogeneration units), these advanced 

systems are in many cases considered inaccessible tools due to their elevated costs, 

special software requirements and long hours of technical training.

▪ The main objectives are: 

▪ Assess the use of reanalysis data as a potential alternative to on-site weather 

measurements

▪ Evaluate the predictive performance of an artificial neural network for the application in 

DHS.
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Introduction

▪ Traditional methods: 

▫ Multiple regression

▫ Decomposition

▫ Exponential smoothing

▪ Data-driven methods: 

▫ Support vector machines 

▫ Artificial neural networks

▫ Fuzzy logic

Knowledge of the system and mathematical modelling 

(Equation with physical parameters)

Discovery of patterns
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Method – Artificial neural networks 

▪ Capability of analyzing data and model dependencies between complex nonlinear features.

▪ “Black-box model”, allowing operators to make effective operational decisions without the need of 

understanding the technical relations between descriptive and target features.

Two-layer neural network 
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Method 

▪ Multi-layer feedforward neural network 

▪ One to two hidden layers

▪ Two to thirty neurons in each hidden layer

▪ Activation function: Sigmoid, Linear 

▪ Data split into training, testing and validation sets (70%, 15%, 15%).

▪ Learning algorithm: Levenberg-Marquardt

▪ The best model was chosen based on the combinations (hidden layers, neurons) that gave the 

minimum RMSE and MAPE. 
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Simplified workflow of the heat load forecasting model
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Data

▪ Heat demand influenced by: 

▪ Meteorological factors – outdoor temperature, wind, precipitation [8]

▪ Social factors – working day, public holidays

▪ Unforeseen events  

▪ Good data in, good data out - significant effect on the predictive power of the model

▪ Separate meaningful information from irrelevant information
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Data Sources

▪ Weather data – Reanalysis of archived observations – forecast models and data 

assimilation systems 

▪ MERRA – observations from NASA’s Earth Observing System satellites into a climate context (1979 – 2017) [12]

▪ SARAH – Satellite Application Facility on Climate Monitoring, European Organisation for the Exploitation of 

Meteorological Satellites [15]

▪ Load data

▪ Historical heat load data from DHS (2014 – 2016) 

▪ Moving window approach – 4 weeks prior to the forecast period 

▪ Social factors and time data

▪ i.e. , Holidays, working days, month, day of week 
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Input selection

▪ Experimental or based on trial and error method

▪ Data reduction technique – Principal component analysis (PCA): Component weights 

help understand which predictors are the most important.  

𝑃𝐶𝑖 = 𝑎𝑖1 ∗ Predictor 1 + 𝑎𝑖2 ∗ Predictor 2 + … + 𝑎𝑖𝑚 ∗ Predictor 𝑀

1. Load for previous day

2. Outdoor temperature

3. Outdoor temperature for previous day

4. Dew point temperature

5. Wet bulb temperature

6. Specific humidity

7. Solar irradiance

8. Variable – Month 

9. Variable – Hour of day

10. Variable – Day of week

11. Variable – Day of month

12. Variable – Day of year

13. Binary variable – Holidays

14. Binary variable – Working day

1. Load for previous day

2. Outdoor temperature

3. Outdoor temperature for previous day

4. Variable – Month

5. Variable – Hour of day

6. Variable – Day of week

7. Variable – Day of year

8. Binary variable – Holidays

9. Binary variable – Working day
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Results 
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Training Testing

RMSE R2 MAPE RMSE R2 MAPE

10.5138 0.9731 2.3381 10.6335 0.8383 3.1126
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Conclusions

▪ ANN model capable of predicting short-term load values of a DHS

▪ Significant advantage over other classical methods, capability to quickly adapt. 

▪ PCA approach was applied to reduce the dimensionality of the data and for the identification of 

uncorrelated input components.

▪ Future work includes the study of additional meteorological descriptive features and improvements in 

network complexity.

▪ Adapt the NN to forecast heat load from real-time input data
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