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Congestion management 
causes high cost

Development of congestion mgmt. cost, causes
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 Load concentrated in the South and West
 Wind concentrated in the North

 Power flows from 
North to South 
cause loop flows 
via Eastern Europe

 Phase shifting 
transformers being 
installed

Source: BNetzA Monitoring Reports 2007 - 2016

Challenge
Current / Real power
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Future supplyConventional supply

Electricity
feed-in

110 kV
grid

Medium / low
voltage grid

Transmission
grid

Availability of reactive power
in the transmission grid declines

Reactive power supply: conventional and future scenario

Source: Kraftwerksliste BNetA 2015, Netzentwicklungsplan 2015

Reactive power supply

 Conventional supply through 
large power plants

 Availability in the 
transmission grid decreases

 Supply can be replaced by 
RES in the distribution grid

Reactive power 
consumption

Reactive power 
consumption

38% 51% 59%

62% 42% 28%

13%

203520252014

8%

DSOOffshore TSOControllable reactive power

Challenge
Voltage / Reactive power
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Redispatch measures conducted in order to 
solve current and voltage problems

Current- and  voltage-induced redispatch

Voltage-induced redispatchCurrent-induced redispatch

Real power Reactive power

Redispatch

Situation

Power plant 1
not dispatched

Power plant 2
fully dispatched

Current too high

Power plant 1
ramped up

Power plant 2
ramped down

Current okay

Power plant 1
not dispatched

Power plant 2
Reactive power

Voltage too low Voltage okay

Power plant 1
Reactive power

Power plant 2
Reactive power

Voltage okay Voltage okay

expan-
sive

cheap

expan-
sive

cheap

expan-
sive

cheap
Q

expan-
sive

cheap
QQ

More expansive power plant ramped up in 
order to alleviate transmission line

More expansive power plant ramped up in 
order to provide reactive power

 Redispatch cost
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Redispatch cost calculated in 
a 3-step approach

Model approach

Step 1
Market model

Step 3
Reactive power: 
voltage-induced 

redispatch

Step 2
Real power:

current-induced 
redispatch

 Electricity market model (copper plate) for 
Germany and neighboring countries to generate 
power plant dispatch

 NTC-based trade between market zones

 Only real power (P) dispatch

Reactive power behavior of 
380 KV line
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Iterative calculation of 
quadratic inductive reactive 

power behavior

 Estimation of current-induced redispatch based on 
a transmission & 110 kV distribution grid model

 Usage of ELMOD to calculate load flows, overloads 
and least-cost redispatch

 Penalty cost for international redispatch

 Estimation of reactive power dispatch and voltage-
induced redispatch

 Usage of ELMOD LinAC, a linearized AC model to 
account for voltage stability and reactive power 
flows

 Iterative approach to account for quadratic 
reactive power behavior of electricity lines
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Redispatch models use linearized real and 
reactive power flow calculations

Simplified model formulation of redispatch models

1) Un / Um... Voltage magnitude at node n / m     Θn / Θm... Voltage angle at node n / m     gn,m / bn,m... Conductance / susceptance between node n and m

Target 
function

Market 
model

Voltage-induced RedispatchCurrent-induced Redispatch

Restrictions

𝐌𝐢𝐧 ෍
𝒏∈𝑵

𝒄𝒐𝒔𝒕𝒏
𝒎𝒂𝒓𝒈

∙ 𝑮𝒆𝒏𝒏
𝑷 − 𝒈𝒆𝒏𝒏

𝑷,𝒎𝒂𝒓𝒌𝒆𝒕

Thermal limit:   𝑳𝒊𝒏𝒆𝑪𝒖𝒓𝒓𝒆𝒏𝒕𝒍 ≤ 𝑻𝒉𝒆𝒓𝒎𝒂𝒍𝒍𝒊𝒎𝒊𝒕𝒍

Voltage TS:   𝟎, 𝟗𝟕 𝒑. 𝒖.≤ 𝑼𝒏 ≤ 𝟏, 𝟎𝟑 𝒑. 𝒖.
Voltage DS:   𝟎, 𝟗𝟒 𝒑. 𝒖.≤ 𝑼𝒏 ≤ 𝟏, 𝟎𝟔 𝒑. 𝒖

𝑮𝒆𝒏𝒏
𝑷,

𝑮𝒆𝒏𝒏
𝑸 ∈

GenP

GenQ

Grid 
balance

Real power:   𝑮𝒆𝒏𝒏
𝑷 − 𝑫𝒆𝒎𝒏

𝑷 = σ𝒎∈𝑵 𝒈𝒏,𝒎 𝑼𝒏 − 𝑼𝒎 − 𝒃𝒏,𝒎(𝜽𝒏−𝜽𝒎)

Reactive power: 𝑮𝒆𝒏𝒏
𝑸
− 𝑫𝒆𝒎𝒏

𝑸
− 𝑳𝒐𝒔𝒔𝒏

𝑸
=

σ𝒎∈𝑵 −𝒃𝒏,𝒎 𝑼𝒏 −𝑼𝒎 − 𝒈𝒏,𝒎(𝜽𝒏−𝜽𝒎)

Iterative calculation
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Current and voltage are represented 
reasonably well by the redispatch model

Model quality of ELMOD AC and ELMOD LinAC

Current [A]

Comparison between redispatch model (ELMOD LinAC) and AC load flow model (ELMOD AC), Germany, 16 grid situations

1) Adjusted Mean Absolute Percentage Error: adjusted in relation to nominal voltage / thermal limit     2) On 380 kV level 

Voltage [p.u.]

LinAC MAE RSME aMAPE1)

I [A] 22.9 39.6 0.69%

LinAC MAE RSME aMAPE1)

U [kV]2) 2.0 2.5 0.53%

Good fit for current Reasonable fit for voltage
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110 kV grid set developed based on OSM 
data and other public sources

Data set for grid model 

Power plants / RES

Attribution to nodes

 Plants: based on 
addresses and 
coordinates

 RES: based on OSM 
data / RES database

Load

 Attribution based on 
GDP and population of 
surrounding area

Nodes: ~5700
Lines: ~6500
Substations: ~370

380 kV
220 kV
110 kV

OSM data

 Substations
380 / 220 / 110 kV

 Electricity lines
380 / 220 / 110 kV

 Nodes with 
generation and 
demand

 Auxiliary nodes

 Lines start / end, 
technical 
parameters
updated with TSO 
static grid models

 Transformers 
380 / 110 kV
220 / 110 kV
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Good fit between congestions 
in model and reality

Congested grid elements: Model results vs. reality

Model results 2014 Monitoring report 2014

Frequency of congested 
grid elements
 Good fit between for 

border areas to 
Poland, Czech 
Republic and 
Denmark

 Fit for Remptendorf-
Redwitz line

 Congestions in the 
North West and 
Center not reliably 
recognized

 Distribution grid 
congestions in the 
North fit local 
curtailment 
compensation

Source: BNetzA Monitoring Report 2015
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Current-induced Current- and voltage induced

Taking into account voltage stability, 
redispatch patterns change

R
e

su
lt

s  Ramp-down of power plants in the North
 Curtailment mainly in Schleswig-Holstein
 Ramp-up in the South and Austria

 Additional redispatch in the South to cover 
reactive power requirements

 Additional ramp-downs in the North

High load and high wind feed-in situation: current- and voltage-induced redispatch
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Reactive power from the 110 kV grid 
decreases voltage-induced redispatch cost

Redispatch costs 2014 in Germany
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 Redispatch and curtailment 
cost is mainly current-
induced

 8% reduction possible 
through reactive power from 
the distribution grid

Redispatch cost Germany 2014
 Comparison of voltage- / 

current- induced redispatch
 Cost reduction potential 

from 110 kV grid reactive 
power sources
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Market zone split decreases redispatch cost 
more than 110 kV reactive power

Redispatch costs 2025 under full grid extension, combined and split DE/AT market zone

106

105

103

102

244

241

347

293

278

322

346 307

304

308

-18

956

-23

-179

With 110kV 
sources

777

9334

7594
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With 110kV 
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4Status Quo
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redispatch

AT
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Com-
bined
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split

 Cost reduction potential through 110 kV sources increases
 Overall reduction of redispatch cost through splitting of DE/AT market zone

Only redispatch cost!
Additionally welfare effects on wholesale 

markets have to be considered!

Redispatch cost 2025
 Comparison of DE/AT market zone and split
 Cost reduction potential from 110 kV grid reactive power sources
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Considerably higher cost under grid 
extension delay – savings potential increases

Redispatch costs 2025 under full and delayed grid extension
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 Considerably higher cost under grid extension delay 
 Under grid extension delay , the cost reduction potential from 110 kV sources increases

Redispatch cost 2025
 Comparison of full and delayed grid extension
 Cost reduction potential from 110 kV grid reactive power sources

Annuity @ 4% WACC
+ 2% O&M cost
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Grid extension cost

Total cost - Market zone split

Total cost - Market zone combined

Which degree of grid extension is 
economically reasonable?

Relationship between grid extension and redispatch cost

Redispatch cost 2025
 Alteration of grid extension level (# of HVDC links)
 Comparison of total grid extension cost
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Conclusions

Key
take-aways

 Current- and voltage induced redispatch will play an 
important role in future electricity systems

 Usage of 110 kV reactive power sources can slightly 
limit redispatch costs

 Market zone layout has a much higher impact

 Grid extensions required to impede extreme cost
increases – number of HVDC links in grid development 
plan seems reasonable
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