

Survival of the fittest: US oil productivity during business cycles

Kristin H. Roll and Roy Endré Dahl

IAEE- Vienna 5. Sept 2017

Objective

- Studying production behavior in US oil production
 - In which way has the business cycles (measured by oil price variability) affected the supply of oil, the productivity within the industry and the sector size?
 - Are there differences between conventional oil and shale oil?

Background

9/5/2017

Litterature

- A number of studies has been conducted for explaining pricing and production behavior in the petroleum industry.
 - Griffin (1985)
 - Jones, (1990)
 - Mabro (1992)
 - Ramcharran (2001, 2002)
 - Dees et al. (2007)
 - Ringlund et al. (2008)
 - Hamilton (2013)
 - Güntner (2014)
 - Cologni and Manera (2014)
 - Gallo et al. (2010)

- The main focuses in previous litterateur:
 - supply differences between OPEC and non OPEC members
- This study focus on:
 - differences between conventional oil and shale oil production
 - WTI crude oil price influence on both production/supply, productivity and sector size

Data

The major US tight oil and shale oil regions (Source: EIA)

Data:

- monthly data from EIA on rigs and production in US oil fields from January 2007 until December 2016.
- we differentiate between conventional oil fields and oil fields in tight oil formation where shale oil is a considerable part of the production
- business cycle WTI oil price

Production model

Production/supply model

$$\begin{split} lnQ_{ct} &= \beta_0 + \beta_p ln P_{t-n} + \beta_t t + \beta_s ln Q_{st} \\ lnQ_{st} &= \beta_0 + \beta_p ln P_{t-n} + \beta_t t + \beta_c ln Q_{ct} \end{split}$$

 Q_{ct} : the production in 1000 bbl/day of conventional oil in time period t.

 Q_{st} : the production in 1000 bbl/day of shale oil in time period t.

 P_{t-n} : the lagged WTI crude oil price

t: a time trend

 θ_p : measuring the supply elasticity,

If $\theta_p > 0$ the supply function is positively sloped and the competitive model is supported, If $\theta_p < 0$ the supply-curve is backward bending and that the target-revenue theory (TRT) is supported

Productivity and sector size models

Productivity model:

$$lnq_{ct} = \beta_0 + \beta_p ln P_{t-n} + \beta_t t$$

$$lnq_{st} = \beta_0 + \beta_p ln P_{t-n} + \beta_t t$$

 q_{ct} :production of conventional oil per rig in time period t

 q_{st} : production of shale oil per rig in time period t

Sector size model

$$lnS_{ct} = \beta_0 + \beta_p lnP_{t-n} + \beta_t t$$

$$lnS_{st} = \beta_0 + \beta_p lnP_{t-n} + \beta_t t$$

 S_{ct} : the number of rigs operated in conventional oil formations in time period t

 S_{st} : the number of rigs operated in shale oil formations in time period t

Correlation between production/productivity/rig count and lagged WTI oil price

	wti _t	wti _{t-1}	wti _{t-2}	wti _{t-3}	wti _{t-4}	wti _{t-5}	wti _{t-6}
Production	-0.4081	-0.4597	-0.5007	-0.5191	-0.4959	-0.4443	-0.3749
Conv.oil (Q _{ct})	-0.4081	-0.4597	-0.5007	-0.5191	-0.4959	-0.4443	-0.3749
Production	0.3804	0.2540	-0.3163	-0.2772	-0.2341	-0.1902	0.1452
Shale oil (Q _{st})	-0.3894	-0.3548	-0.3103	-0.2772	-0.2341	-0.1902	-0.1452
Productivety	-0.3920	-0.4667	-0.5318	-0.5742	-0.5877	-0.5705	-0.5226
Conv. oil (q _{ct})	-0.5920	-0.4007	-0.5516	-0.5742	-0.56//	-0.5705	-0.5220
Productivety	-0.6807	-0.7043	-0.7188	-0.7154	-0.6899	-0.6398	-0.5719
Shale oil (q _{st})	-0.0607	-0.7043	-0.7100	-0.7134	-0.0699	-0.0396	-0.3719
Nr. rigs	0.4135	0.4640	0.5072	0.5366	0.5528	0.5560	0.5486
Conv. oil (S _{ct})	0.4133	0.4040	0.3072	0.5500	0.3326	0.5500	0.3460
Nr. rigs	0.5558	0.6105	0.6553	0.6828	0.6912	0.6807	0.6515
Shale oil (S _{st})	0.5558	0.0105	0.0555	0.0028	0.0312	0.0607	0.0313

Results from multivariable regression model

	Production		Produ	ctivity	Sector size	
	Q_{ct}	\mathbf{Q}_{st}	q _{ct}	q _{st}	S _{ct}	S _{st}
βο	7.9786	2.0787	8.6111	6.0376	-0.4267	-0.1194
	(0.000)	(0.331)	(0.000)	(0.000)	(0.332)	(0.708)
β _p	-0.0789	0.1553	-1.3844	-1.2032	1.4109	1.4176
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
β _t	-0.0010	0.0161	-0.0147	0.0092	0.0135	0.0063
	(0.112)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
β _s	0.0875					
	(0.018)					
β _c		0.4945				
		(0.0500)				
R ²	0.2921	0.9446	0.7303	0.8448	0.7785	0.7891

p-values in parentheses

Results from multivariable regression model

	Production		Produ	ctivity	Sector size	
	Q_{ct}	\mathbf{Q}_{st}	q _{ct}	q _{st}	S _{ct}	S _{st}
0	7.9786	2.0787	8.6111	6.0376	-0.4267	-0.1194
βο	(0.000)	(0.331)	(0.000)	(0.000)	(0.332)	(0.708)
β _p	-0.0789	0.1553	-1.3844	-1.2032	1.4109	1.4176
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
β _t	-0.0010	0.0161	-0.0147	0.0092	0.0135	0.0063
	(0.112)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
β _s	0.0875					
	(0.018)					
β _c		0.4945				
		(0.0500)				
R ²	0.2921	0.9446	0.7303	0.8448	0.7785	0.7891

p-values in parentheses

WTI and productivity (bbl/d per rig) over time for conventional oil and shale oil

Results from multivariable regression model

	Production		Produ	ctivity	Sector size	
	Q_{ct}	\mathbf{Q}_{st}	q _{ct}	q _{st}	S _{ct}	S _{st}
βο	7.9786	2.0787	8.6111	6.0376	-0.4267	-0.1194
	(0.000)	(0.331)	(0.000)	(0.000)	(0.332)	(0.708)
β _p	-0.0789	0.1553	-1.3844	-1.2032	1.4109	1.4176
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
β _t	-0.0010	0.0161	-0.0147	0.0092	0.0135	0.0063
	(0.112)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
β _s	0.0875					
	(0.018)					
β _c		0.4945				
		(0.0500)				
R ²	0.2921	0.9446	0.7303	0.8448	0.7785	0.7891

p-values in parentheses

Conclusion

- Increase in productivity during periods with low oil prices
 - selection of the most efficient and profitable oil fields and rigs
- Increased productivity for shale oil and deceased productivity for conventional oil
 - A more mature technology applied on conventional oil fields
 - A steeper learning curve for shale oil sector.
 - Different market structure.
 - Different cost structure

Conclusion

- Shale oil extraction is relative expensive compared to conventional oil production
- If the goal of the oil companies are a stable profit rather than a higher, but also more fluctuating profit
 - shale oil production should be conducted in periods of high oil price
- The shale oil sector has shorter response time to the economic cycles than conv. sector
 - technological leapfrogging
- The supply of conventional oil is less vulnerable to the business cycles, and will therefore insure that a stable supply persist by operating as a buffer

Conclusion

Thank you for your attention!

Question?