

Integrating RES-E in Balancing Markets by harmonising procurement of FRR in selected Central European Countries

BETTINA BURGHOLZER
TU Wien – Energy Economics Group (EEG)

4th September 2017 15th European IAEE Conference

- Motivation
- Research Question & Analysed Scenarios
- * "EDisOn+Balancing" Model
- Results for the year 2015
 - Impacts on the cost structure
 - Interdependencies on procured capacities and exchanges
 - Environmental impacts
- Conclusions

European Goal: successful achievement and implementation of the Internal Energy Market – IEM

- ❖ ENTSO-E → Network Code on Electricity Balancing (NC EB) has been approved on 16th March 2017
- several pilot projects concerning Balancing have already started, e.g.
 - harmonising the product design of aFRR in Germany and Austria,
 - common activation of aFRR by the German an Austrian TSOs (started in July 2016),
- further plans are...
 - to harmonise the product design of mFRR and RR,
 - to implement common procurement of aFRR in Austria and Germany (2017),
 - to achieve common activation and procurement of mFRR in Austria and Germany,
 - to enlarge the region of common balancing.

Research Question & Analysed Scenarios

Questions

- What savings can be achieved by harmonising and shortening balancing procurement?
- What implications can be expected if common procurement for aFRR is applied?
- What interdependencies on aFRR and the wholesale market can be observed, if also mFRR is procured commonly?

Scenarios

- Ref. Current Design (weekly P and OP products, thermal plants and PHS can procure FRR)
- A. 4h-products for aFRR
- B. A & common procurement aFRR
- C. B & common procurement mFR

"EDisOn+Balancing" Model

- = Electricity Dispatch Optimization: Linear Programming (LP) developed in MATLAB®
- objective function: minimising (wholesale generation costs) + (procurement costs of a&m FRR)
- constraints:
 - electricity generation: demand = supply
 - heat: demand = supply (power-to-heat and CHPs)
 - balancing procurement: required = supply
 - capacity restrictions of power plants
 - ramping limits and start costs of thermal power plants
 - reservoir level equations for hydro storages and other storages
 - spillage of RES-E (solar, wind, natural inflow) and Not Supplied Energy (NSE)
 - power flows, injections and exchanges via Net Transfer Capacity (NTC) or DC power flow approach

"EDisOn+Balancing" Model

functionalities:

- deterministic and assumes a perfectly competitive market with perfect foresight
- hourly resolution of a whole year at country level for Central Europe
- rolling horizon optimization (weekly or daily)
- wholesale market and balancing market split into control areas
- control areas can be split into balancing groups
- different product designs for aFRR are possible (P, OP, WE, HT, NT → 4h) & mFRR
- thermal power plants and pumped hydro storages can procure balancing capacity (incl. ramping)
- implicite allocation of transmission capacity for balancing

geographical scope:

- wholesale: AT,DE,NL,BE,FR,CH,IT,SI,HU,SK,CZ & PL.
- balancing: APG, TransnetBW, Amprion, TenneT, 50Hertz, TenneT NL & ELIA.

TenneT NL TenneT Sohertz

PL

PL

PL

PL

Amprion

CZ

SK

APG

HU

SII

IT

Results: Impacts on the cost structure

- * wholesale generation costs are ...
 - mostly influenced by the TSOs, where balancing is respected;
 - reduced by 0.34 % in Case C, which are 90 MEuro/a for the whole region.

total costs for TSOs balancing

- introduction of common procurement has got higher impacts than changing product design only (compare B&C with A)
- common procurement of mFRR has positive effects on the costs of aFRR

TSOs balancing are NL, BE, DE & AT.

4th September 2017

15th European IAEE Conference

Results: Interdependencies on procured capacities and exchanges (I)

- Average hourly flows of wholesale electricity market clearing and the reserved capacity for upward FRR (case C) on transmission lines:
 - mostly used for wholesale electricity market flows
 - on interconnections
 - APG-TenneT, APG-TransnetBW, TenneT-50Hertz, TransnetBW-Amprion,

it is often used for providing upward aFRR

- on interconnections
 - TenneT-TransnetBW, TenneT-Amprion, TenneT-TenneTNL

capacity is used for upward mFRR

For the transmission line APG-TenneT positive values mean, that APG provides upward FRR or exports energy to TenneT, negative vice versa.

Results: Interdependencies on procured capacities and exchanges (II)

mFRR

800

600

400

200

-200

-400

-600

1.000 C: 4h a&mFRR Exch

1.000 B: 4h aFRR Exch

800

600

400

-200

-400

- average procured capacity for upward mFRR
 - B→C: TransnetBW, Amprion and TenneT NL provide balancing capacity to APG and TenneT ≩²⁰⁰
- and aFRR:
 - Ref→A: TenneT provides aFRR to the remaining German TSOs
 - A→B: Austrian PHS procure a significant amount of aFRR for German TSOs

Results: Environmental impacts

CO₂ emissions:

- the total amount is reduced in all cases
- A: emissions for balancing increase, due to more flexibility in product design
- RES-E spillage & RES-E share:
 - spillage decreases in all cases
 - mostly wind spillages can be avoided
 - RES-E share increases

$$RES - E \text{ share} = \frac{PV + Wind + Biomass + RoR + PHS - Pump \cdot \eta}{Demand}$$

	total	whole	esale	balancing		
CO ₂ Emissions (MtCO ₂ /a)	All	AT	All	AT	All	
Ref: Current Design	610.3	9.3	567.5	2.0	42.9	
A: 4h aFRR	-0.2%	-0.5%	-0.3%	4.9%	1.2%	
B: 4h aFRR Exch	-1.4%	-0.8%	-1.5%	28.0%	-0.7%	
C: 4h a&mFRR Exch	-1.8%	-1.8%	-1.4%	-7.5%	-7.0%	

Conclusions

- Implementation of shorter balancing products and allowing common procurement of aFRR and mFRR by all TSOs reduces costs for procurement significantly.
- CO₂ emissions can be reduced by around 1.7% in Austria and by 1.4% for the respected area in total.
- The spillage of renewable generation can be bisected in Austria and the whole region.
- The renewable share of electricity generation is increased to 29.1% (+0.6%) in the respected area.

	KPIs for Total System	Ref: Current Design	A: 4h aFRR	B: 4h aFRR Exch	C: 4h a&mFRR Exch
	wholesale generation costs (Meuro/a)	25617	-0,1%	-0,2%	-0,3%
	FRR procurement costs (Meuro/a)	463	3,5%	-1 6,0%	-28,9%
	total costs (Meuro/a)	26080	-0,2%	-0,5%	0,8%
١	wholesale CO ₂ emissions (MtCO ₂ /a)	567	-0,3%	1,5%	1,4%
,	FRR CO ₂ emissions (MtCO ₂ /a)	43	1,2%	-0,7%	7,0%
	total CO ₂ emissions (MtCO ₂ /a)	610	-0,2%	1,4%	1,8%
	RES-E spillage (GWh/a)	632	9,6%	9,0%	-55,4%
	RES-E share (%)	28,5%	0,4%	2,1%	2,0%

Comparing 2015 with 2030

KPIs for Total System	Ref: Current Design	A: 4h aFRR	B: 4h aFRR Exch	C: 4h a&mFRR Exch						
wholesale generation costs (Meuro/a)	25617	-0,1%	-0,2%	-0,3%						
FRR procurement costs (Meuro/a)	463	3,5%	-16,0%	-2 8,9%						
total costs (Meuro/a)	26080	-0,2%	-0,5%	0,8%						
wholesale CO ₂ emissions (MtCO ₂ /a)	567	-0,3%	1,5%	1,4%		20 ¹	15			
FRR CO ₂ emissions (MtCO ₂ /a)	43	1,2%	-0,7%	7,0%						
total CO ₂ emissions (MtCO ₂ /a)	610	-0,2%	1,4%	1,8%						
RES-E spillage (GWh/a)	632	9,6%	9,0%	-5 5,4%						
RES-E share (%)	28,5%	0,4%	2,1%	2,0%						
KPIs for Total System	Ref: P/OP weekly	A: P/OP daily	B: P/OP sym	w C: P/OP d sym	D: 4h aFRR	E: 4h aFRR Exch	F: 4 a&mF Exc	RR	G: 4h a&mFRR Exch wOth Stor	
wholesale generation costs (Meuro/a)	33492	-0,2%	ó 1,4	% 1,1%	-0,2%	-0,3%	-0	,4%	-0,4%	
FRR procurement costs (Meuro/a)	850	-6,5%	6 34,5	% 27,7%	-10,7%	-7,7%	-9	,7%	-9,9%	20 3
total costs (Meuro/a)	34342	-0,3%	6 2,2	% 1,8%	-0,5%	-0,5%	-0	,6%	-0,6%	
wholesale CO ₂ emissions (MtCO ₂ /a)	323	0,1%	6 0,8	% 0,6%	0,0%	-0,2%	-0),2%	-0,2%	
FRR CO ₂ emissions (MtCO ₂ /a)	29	-3,4%	6 12,5	% 14,6%	-1,5%	-7,6%	-4	,5%	-9,5%	
total CO ₂ emissions (MtCO ₂ /a)	353	-0,2%	6 1,7	% 1,8%	-0,1%	-0,8%	-0	,5%	-0,9%	
RES-E spillage (GWh/a)	15252	-1,7%	6 11,6	% 7,7%	-2,4%	-2,2%	-2	2,8%	-2,8%	
RES-E share (%)	58,3%	0,0%	6 -0,5	% -0,4%	0,1%	0,2%	0),2%	0,2%	

- analysing the impacts of considering wind farms as balancing capacity provider (especially for mFRR),
- including demand side management,
- simulating the activation of balancing energy,
- include stochasticity in renewable generation,
- etc.

References

- Burger, Markus, Bernhard Graeber, and Gero Schindlmayr (2007). Managing energy risk: An integrated view on power and other energy markets. Wiley finance series. Chichester et al.: John Wiley & Sons. ISBN: 047072546X.
- Burgholzer, Bettina; Auer, Hans (2016): Cost/benefit analysis of transmission grid expansion to enable further integration of renewable electricity generation in Austria. In: Renewable Energy 97, S. 189–196. DOI: 10.1016/j.renene.2016.05.073.
- Burgholzer, Bettina (2016): Evaluation of different balancing market designs with the EDisOn+Balancing model. In: 2016 13th International Conference on the European Energy Market (EEM). Porto, Portugal, S. 1–6. DOI: 10.1109/EEM.2016.7521271.
- Farahmand, H. and G. L. Doorman (2012). "Balancing market integration in the Northern European continent." In: Applied Energy 96, pp. 316–326. ISSN: 03062619. DOI: 10.1016/j.apenergy.2011.11.041.
- Hirth, Lion and Inka Ziegenhagen (2015). "Balancing power and variable renewables: Three links." In: Renewable and Sustainable Energy Reviews 50, pp. 1035–1051. ISSN: 13640321. DOI: 10.1016/j.rser.2015.04.180.
- Morales, Juan M. (2014). Integrating renewables in electricity markets: Operational problems. Vol. volume 205. International series in operations research & management science. Springer. ISBN: 978-1-4614-9410-2.
- Müsgens, Felix, Axel Ockenfels, and Markus Peek (2014). "Economics and design of balancing power markets in Germany." In: International Journal of Electrical Power & Energy Systems 55, pp. 392–401. ISSN: 01420615. DOI: 10.1016/j.ijepes.2013.09.020.
- Shahidehpour, M., Hatim Yamin, and Zuyi Li (2002). Market operations in electric power systems: Forecasting, scheduling, and risk management. [New York]: Institute of Electrical and Electronics Engineers, Wiley-Interscience. ISBN: 9780471463948.
- ❖ Van den Bergh, K, K. Bruninx, et al. (2013). A Mixed-Integer Linear Formulation of the Unit Commitment Problem: Working Paper. url: www.mech.kuleuven.be/en/tme/research/energy%5C_environment/Pdf/wpen2013-11.pdf .
- Van den Bergh, K, E. Delarue, and W. D'Haeseleer (2014). DC power flow in unit commitment models: TME Working Paper -Energy and Environment. url: www.mech.kuleuven.be/en/tme/research/energy%5C_environment/Pdf/wpen2014-12.pdf.

DIPL.-ING. BETTINA BURGHOLZER

Technische Universität Wien Institute of Energy Systems and Electrical Drives Energy Economics Group – EEG

Gußhausstraße 25-29 / E370-3 1040 Vienna, Austria

[P] +43 1 58801 370 366 [E] burgholzer@eeg.tuwien.ac.at [W] www.eeg.tuwien.ac.at

Assumptions: European grid

