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European Goal: successful achievement and implementation of the 

Internal Energy Market – IEM

 ENTSO-E  Network Code on Electricity Balancing (NC EB) has been approved on 

16th March 2017 

 several pilot projects concerning Balancing have already started, e.g.

 harmonising the product design of aFRR in Germany and Austria,

 common activation of aFRR by the German an Austrian TSOs (started in July 2016),

 further plans are…

 to harmonise the product design of mFRR and RR,

 to implement common procurement of aFRR in Austria and Germany (2017),

 to achieve common activation and procurement of mFRR in Austria and Germany,

 to enlarge the region of common balancing.

Motivation
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FRR = Frequency Restoration Reserve (manually and automatically activated) 



Questions Scenarios

 What savings can be achieved by

harmonising and shortening balancing

procurement?

 What implications can be expected if

common procurement for aFRR is

applied?

 What interdependencies on aFRR and

the wholesale market can be

observed, if also mFRR is procured

commonly?

Ref. Current Design 

(weekly P and OP products, thermal 

plants and PHS can procure FRR)

A. 4h-products for aFRR

B. A & common procurement aFRR

C. B & common procurement mFR

Research Question & Analysed Scenarios

4th September 2017 415th European IAEE Conference

FRR = Frequency Restoration Reserve (manually and automatically activated)

P = Peak, OP = Off-Peak, WE = Weekend, HT = Peak, NT = Off-Peak, 4h = 4-hour-products



= Electricity Dispatch Optimization: Linear Programming (LP) developed in MATLAB®

 objective function:

minimising (wholesale generation costs) + (procurement costs of a&m FRR)

 constraints:

 electricity generation: demand = supply

 heat: demand = supply (power-to-heat and CHPs)

 balancing procurement: required = supply

 capacity restrictions of power plants

 ramping limits and start costs of thermal power plants

 reservoir level equations for hydro storages and other storages

 spillage of RES-E (solar, wind, natural inflow) and Not Supplied Energy (NSE)

 power flows, injections and exchanges via Net Transfer Capacity (NTC) or DC power flow

approach

“EDisOn+Balancing” Model
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 functionalities:

 deterministic and assumes a perfectly competitive market with perfect foresight

 hourly resolution of a whole year at country level for Central Europe

 rolling horizon optimization (weekly or daily)

 wholesale market and balancing market split into control areas

 control areas can be split into balancing groups

 different product designs for aFRR are possible (P, OP, WE, HT, NT  4h) & mFRR

 thermal power plants and pumped hydro storages can procure balancing capacity (incl. 

ramping)

 implicite allocation of transmission capacity for balancing

 geographical scope: 

 wholesale: AT,DE,NL,BE,FR,CH,IT,SI,HU,SK,CZ & PL.

 balancing: APG, TransnetBW, Amprion, TenneT, 50Hertz, 

TenneT NL & ELIA.

“EDisOn+Balancing” Model

FRR = Frequency Restoration Reserve (manually and automatically)

P = Peak, OP = Off-Peak, WE = Weekend, HT = Peak, NT = Off-Peak, 4h = 4-hour-products
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 wholesale generation costs are …

 mostly influenced by the TSOs, where 

balancing is respected;

 reduced by 0.34 % in Case C, which 

are 90 MEuro/a for the whole region.

 total costs for TSOs balancing

 introduction of common procurement 

has got higher impacts than changing 

product design only (compare B&C with A)

 common procurement of mFRR has 

positive effects on the costs of aFRR

Results: Impacts on the cost structure
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 Average hourly flows of wholesale 

electricity market clearing and the 

reserved capacity for upward FRR (case 

C) on transmission lines:

 mostly used for wholesale electricity 

market flows

 on interconnections 

• APG-TenneT, APG-TransnetBW, TenneT-

50Hertz, TransnetBW-Amprion,

it is often used for providing upward 

aFRR

 on interconnections

• TenneT-TransnetBW, TenneT-Amprion, 

TenneT-TenneTNL

capacity is used for upward mFRR

For the transmission line APG-TenneT positive 

values mean, that APG provides upward FRR 

or exports energy to TenneT, negative vice 

versa.

Results: Interdependencies on procured capacities and 

exchanges (I)
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 average procured capacity for upward mFRR

 BC: TransnetBW, Amprion and TenneT NL provide 

balancing capacity to APG and TenneT

 and aFRR:

 RefA: TenneT provides aFRR to the remaining 

German TSOs

 AB: Austrian PHS procure a significant amount of 

aFRR for German TSOs

 BC: only slight changes

Results: Interdependencies on procured capacities and 

exchanges (II)

mFRR

aFRR
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 CO2 emissions:

 the total amount is reduced in all 

cases

 A: emissions for balancing increase, 

due to more flexibility in product 

design

 RES-E spillage & RES-E share:

 spillage decreases in all cases

 mostly wind spillages can be avoided

 RES-E share increases

Results: Environmental impacts

total wholesale balancing
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 Implementation of shorter balancing products and allowing common procurement of

aFRR and mFRR by all TSOs reduces costs for procurement significantly.

 CO2 emissions can be reduced by around 1.7% in Austria and by 1.4% for the

respected area in total.

 The spillage of renewable generation

can be bisected in Austria and the

whole region.

 The renewable share of electricity

generation is increased to 29.1% (+0.6%)

in the respected area.

Conclusions
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Comparing 2015 with 2030
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2015

2030



 analysing the impacts of considering wind farms as balancing capacity provider

(especially for mFRR),

 including demand side management,

 simulating the activation of balancing energy,

 include stochasticity in renewable generation,

 etc.

Future work
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Assumptions: European grid


