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m |V one possible tool to model interactions under endogeneity /
simultaneity bias Angrist and Kruger [2001].

m How to assess such models?
m How to assess instrument suitability?

m Electricity Markets: ideal setting to test IV demand models

m Perfect information (observable bids / asks)
= No substitution effects

m Demand / supply shocks differentiable

m Suitable IV data available

— Relevant for both: general 10 and Energy research
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Figure: Demand bid curve for 01.05.2014, Hour 1



Framework for model assessment <~ TUM

Use perfect information to calculate true elasticities: EPEX day-ahead
hourly bid curves, 2014—2015

50

T T T T
20000 22000 24000 26000

Volume [Q]

Figure: Demand bid curve for 01.05.2014, Hour 1, around equilibrium



Framework for model assessment <~ TUM

Compare estimates obtained from equilibrium prices / quantities to true
elasticities: Use EPEX equilibrium prices/quantities for the same product



Framework for model assessment <~ TUM

Compare estimates obtained from equilibrium prices / quantities to true
elasticities: Use EPEX equilibrium prices/quantities for the same product

°
°
g 4
3
© o
° o
° o
° o 00
o 0,000 8 0
o
o 0o ° 50 ° o °
o ° ° o ° & °
2 - o o o o, o o
° ° 9 °
o
0 & R
o 000 o 0%
- ®_ o &0 ©° o ° o °q o .
% o o 6 oo 00 ® o %6
o ° ° °
£ ° °© 8o © § 00 ° g o o
o o oo o5 00
N o °© g 000 o o ° 0°0
o @ o 0
o o o° o og %0
0 a0 o
oo ) og P00g ©8 % 00! o
%o O o © o
o ? %o ©
8o
© o
o
o
o | o °
8 o
o @, o
o ogo
800 &
o
°
T T T T
30000 35000 40000 45000
Volume [Q]

Figure: Equilibrium prices/quantities, May 2014, identification problem
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Suitable instrument fulfils:
© instrument relevance
® instrument exogeneity
— We choose renewable generation as instrument

Supply of RES-E influences price formation (Fixed feed-in tariff for
producers) (=relevance)

Demand not directly affected (=exogeneity)
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In the following, we compare 3 estimation approaches
©® True demand elasticities extracted from bid/ask curves
® |V regression elasticities with P, Q, RES, dummies

® Lasso regression combined with 1V (similar to Belloni et al. [2011])
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1. For true demand elasticities, assume isoelastic function.

a(p) = #P"

This is equivalent to fitting:

In(Q) = Bo + B1in(P)

31 estimates elasticity for an hourly ask curve
— Average all hours over a period to get an estimate of mean hourly elasticity
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Empirical setup: Estimations ~Tim

3. Lasso/IV estimation of demand from equilibrium (P, Q)
Lasso regression with P, Q, RES
Use 2-stage-least-squares combined with Lasso
1st stage: Regress P on RES, wind, pv, load, Pyas, Peoar, dummies
2nd stage: In(Q) = By + B1InP
— B4 from 2nd stage represents demand elasticity

Note: Computing standard errors of the estimation in this setting is non-trivial
and requires the use of Bayesian Lasso. (Park and Casella [2008]).



Framework for model assessment <~ TUM

Overview of empirical methods

Bid curves

Equilibrium Prices / Quantities

Log-log OLS Lasso + 2SLS

True elasticities Estimated elasticities
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Yearly results (Peak hours)

Model Estimate Std. Error  p-value
True estimate  —0.38 — —
OoLS -0.23 0.024 <0.01
OLS, control load —0.37 0.048 <0.01
2SLS,RES -0.45 0.011 <0.01
2S8LS, RES, hours —-0.37 0.012 <0.01
2SLS, Lasso -0.36 0.003 <0.01

Observations  2*8760

1st stage F-tests  1066™** / 1143***




Results

CTUT

Yearly results (Off-Peak hours)

Model  Estimate Std. Error  p-value
True estimate  —0.39 — —
OLS -0.07 0.16 <0.01
OLS, control load —0.13 0.031 <0.01
2SLS,RES -0.43 0.026 <0.01
2SLS, RES, hours  -0.39 0.038 <0.01
2SLS, Lasso —-0.39 0.0042 <0.01

Observations  2*8760

1st stage F-tests  1120*** / 1371***
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Findings and conclusion ~Tim

m The supply shifting effect of renewables is especially prominent
during the winter months

= For summer months and off-peak periods, the combination of Lasso
Regression and 2SLS performs significantly better than classical 2SLS

m Summer months in general harder to fit (bigger deviation from true
elasticity and bigger standard errors)

m For winter months, there is no substantial difference between 2SLS and
Lasso+2SLS, apart from lower standard errors — In periods of
instrument weakness , regularization provides significant
amelioration

m There are no substantial differences between peak and off-peak
elasticity for the observed period

= Locality of Instrumental Variable can yield biased resultstt
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Outlook
m Investigate which functional form is suited best (non-isoelastic?)
m Measure for locality of IV? Can we infer it without having true bid
curves?
m Out-of-sample comparisons
m Possibly other demand and supply shifters or a combination thereof?



CTUT
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Thanks for your attention!
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Market description
EPEX day-ahead auction market in Germany
Underlying: Electricity for delivery the next day, one particular hour
Orders: Up to 256 price / quantity combinations for each hour
Price range fixed
Available data:
©® All hourly bids / asks 2014—2015
® Equilibrium prices / quantities, hourly, 2014—2015
® Total renewables generation, hourly, 2014-2015



