



# Assessing Models for Demand Estimation Evidence from Power Markets

Vadim Gorski Sebastian Schwenen

15th IAEE European Conference 2017, 06/09/2017



■ Importance of demand elasticities:



- Importance of demand elasticities:
  - Understanding demand response *Lijesen* [2007]



- Importance of demand elasticities:
  - Understanding demand response *Lijesen* [2007]
  - Evaluating policies (e.g. fixed price range) Einav and Levin [2010]



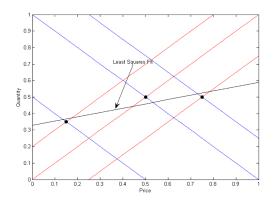
- Importance of demand elasticities:
  - Understanding demand response Lijesen [2007]
  - Evaluating policies (e.g. fixed price range) Einav and Levin [2010]
  - Demand forecasting



- Importance of demand elasticities:
  - Understanding demand response *Lijesen* [2007]
  - Evaluating policies (e.g. fixed price range) Einav and Levin [2010]
  - Demand forecasting
  - $\rightarrow$  Estimating demand elasticity in general problematic (identification problem)



- Importance of demand elasticities:
  - Understanding demand response Lijesen [2007]
  - Evaluating policies (e.g. fixed price range) Einav and Levin [2010]
  - Demand forecasting
  - ightarrow Estimating demand elasticity in general problematic (identification problem)





■ IV one possible tool to model interactions under endogeneity / simultaneity bias *Angrist and Kruger* [2001].



- IV one possible tool to model interactions under endogeneity / simultaneity bias *Angrist and Kruger* [2001].
  - How to assess such models?



- IV one possible tool to model interactions under endogeneity / simultaneity bias *Angrist and Kruger* [2001].
  - How to assess such models?
  - How to assess instrument suitability?



- IV one possible tool to model interactions under endogeneity / simultaneity bias Angrist and Kruger [2001].
  - How to assess such models?
  - How to assess instrument suitability?
- Electricity Markets: ideal setting to test IV demand models



- IV one possible tool to model interactions under endogeneity / simultaneity bias Angrist and Kruger [2001].
  - How to assess such models?
  - How to assess instrument suitability?
- Electricity Markets: ideal setting to test IV demand models
  - Perfect information (observable bids / asks)



- IV one possible tool to model interactions under endogeneity / simultaneity bias Angrist and Kruger [2001].
  - How to assess such models?
  - How to assess instrument suitability?
- Electricity Markets: ideal setting to test IV demand models
  - Perfect information (observable bids / asks)
  - No substitution effects



- IV one possible tool to model interactions under endogeneity / simultaneity bias Angrist and Kruger [2001].
  - How to assess such models?
  - How to assess instrument suitability?
- Electricity Markets: ideal setting to test IV demand models
  - Perfect information (observable bids / asks)
  - No substitution effects
  - Demand / supply shocks differentiable



- IV one possible tool to model interactions under endogeneity / simultaneity bias Angrist and Kruger [2001].
  - How to assess such models?
  - How to assess instrument suitability?
- Electricity Markets: ideal setting to test IV demand models
  - Perfect information (observable bids / asks)
  - No substitution effects
  - Demand / supply shocks differentiable
  - Suitable IV data available



- IV one possible tool to model interactions under endogeneity / simultaneity bias Angrist and Kruger [2001].
  - How to assess such models?
  - How to assess instrument suitability?
- Electricity Markets: ideal setting to test IV demand models
  - Perfect information (observable bids / asks)
  - No substitution effects
  - Demand / supply shocks differentiable
  - Suitable IV data available
- → Relevant for both: general IO and Energy research

#### Contents



- Motivation
- Framework for model assessment
- Empirical setup
  - Estimating demand elasticity from bid curves
  - Estimating demand elasticity using IV
- Results
- Conclusion and outlook



**Use perfect information to calculate true elasticities**: EPEX day-ahead hourly bid curves, 2014–2015



**Use perfect information to calculate true elasticities**: EPEX day-ahead hourly bid curves, 2014–2015

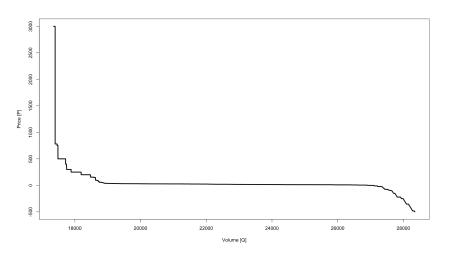


Figure: Demand bid curve for 01.05.2014, Hour 1



**Use perfect information to calculate true elasticities**: EPEX day-ahead hourly bid curves, 2014–2015

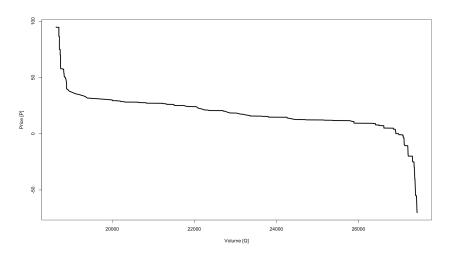


Figure: Demand bid curve for 01.05.2014, Hour 1, around equilibrium



Compare estimates obtained from equilibrium prices / quantities to true elasticities: Use EPEX equilibrium prices/quantities for the same product



Compare estimates obtained from equilibrium prices / quantities to true elasticities: Use EPEX equilibrium prices/quantities for the same product

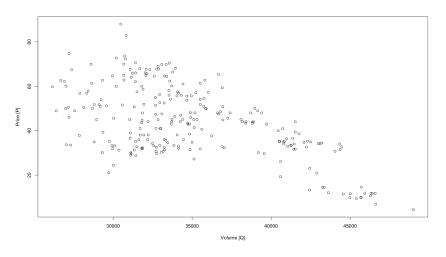


Figure: Equilibrium prices/quantities, May 2014, identification problem



#### Suitable instrument fulfils:

- instrument relevance
- instrument exogeneity



#### Suitable instrument fulfils:

- instrument relevance
- instrument exogeneity
- → We choose renewable generation as instrument



#### Suitable instrument fulfils:

- instrument relevance
- instrument exogeneity
- → We choose renewable generation as instrument

Supply of RES-E influences price formation (Fixed feed-in tariff for producers) (=relevance)



#### Suitable instrument fulfils:

- instrument relevance
- instrument exogeneity
- → We choose renewable generation as instrument

Supply of RES-E influences price formation (Fixed feed-in tariff for producers) (=relevance)

Demand not directly affected (=exogeneity)



#### In the following, we compare 3 estimation approaches

True demand elasticities extracted from bid/ask curves



#### In the following, we compare 3 estimation approaches

- True demand elasticities extracted from bid/ask curves
- 2 IV regression elasticities with P, Q, RES, dummies



#### In the following, we compare 3 estimation approaches

- True demand elasticities extracted from bid/ask curves
- 2 IV regression elasticities with P, Q, RES, dummies
- 3 Lasso regression combined with IV (similar to Belloni et al. [2011])



1. For **true** demand elasticities, assume isoelastic function.

$$Q(P) = \beta P^{\gamma}$$



1. For true demand elasticities, assume isoelastic function.

$$Q(P) = \beta P^{\gamma}$$

This is equivalent to fitting:

$$ln(Q) = \beta_0 + \beta_1 ln(P)$$



1. For true demand elasticities, assume isoelastic function.

$$Q(P) = \beta P^{\gamma}$$

This is equivalent to fitting:

$$ln(Q) = \beta_0 + \beta_1 ln(P)$$

 $\beta_1$  estimates elasticity for an hourly ask curve

ightarrow Average all hours over a period to get an estimate of mean hourly elasticity



1. For true demand elasticities, assume isoelastic function.

$$Q(P) = \beta P^{\gamma}$$

This is equivalent to fitting:

$$ln(Q) = \beta_0 + \beta_1 ln(P)$$

 $\beta_1$  estimates elasticity for an hourly ask curve

ightarrow Average all hours over a period to get an estimate of mean hourly elasticity

$$\hat{\beta}_1 = \frac{1}{N} \sum_{i=1}^{N} \beta_{1,i}$$



2. IV estimation of demand from equilibrium (P, Q) IV regression with P, Q, RES



2. IV estimation of demand from equilibrium (P, Q)

IV regression with P, Q, RES

Use 2-stage-least-squares



#### 2. IV estimation of demand from equilibrium (P, Q)

IV regression with P, Q, RES

Use 2-stage-least-squares

1st stage:  $P = \alpha_0 + \alpha_1 RES$ 



IV regression with P, Q, RES

Use 2-stage-least-squares

1st stage:  $P = \alpha_0 + \alpha_1 RES$ 

2nd stage:  $\mathit{In}(\mathit{Q}) = \beta_0 + \beta_1 \mathit{In} \tilde{\mathit{P}}$ 



IV regression with P, Q, RES

Use 2-stage-least-squares

1st stage:  $P = \alpha_0 + \alpha_1 RES$ 

2nd stage:  $\mathit{In}(Q) = \beta_0 + \beta_1 \mathit{In} \tilde{P}$ 

Include dummy variables for hours, weekends, months



IV regression with P, Q, RES

Use 2-stage-least-squares

1st stage:  $P = \alpha_0 + \alpha_1 RES$ 

2nd stage:  $In(Q) = \beta_0 + \beta_1 In\tilde{P}$ 

Include dummy variables for hours, weekends, months

Q as proxy for demand

 $\rightarrow$  price elasticity of demand in **EPEX day-ahead market only**.



IV regression with P, Q, RES

Use 2-stage-least-squares

1st stage:  $P = \alpha_0 + \alpha_1 RES$ 

2nd stage:  $In(Q) = \beta_0 + \beta_1 In\tilde{P}$ 

Include dummy variables for hours, weekends, months

Q as proxy for demand

→ price elasticity of demand in EPEX day-ahead market only.

Alternative: load as proxy



IV regression with P, Q, RES

Use 2-stage-least-squares

1st stage:  $P = \alpha_0 + \alpha_1 RES$ 

2nd stage:  $In(Q) = \beta_0 + \beta_1 In\tilde{P}$ 

Include dummy variables for hours, weekends, months

Q as proxy for demand

→ price elasticity of demand in EPEX day-ahead market only.

Alternative: load as proxy

 $ightarrow eta_1$  from 2nd stage represents demand elasticity

# Empirical setup: Estimations



3. Lasso/IV estimation of demand from equilibrium (P, Q)Lasso regression with P, Q, RES

## Empirical setup: Estimations



3. Lasso/IV estimation of demand from equilibrium (P, Q)Lasso regression with P, Q, RES

Use 2-stage-least-squares combined with Lasso



Lasso regression with P, Q, RES

Use 2-stage-least-squares combined with Lasso

1st stage: Regress P on RES, wind, pv, load,  $P_{gas}$ ,  $P_{coal}$ , dummies



Lasso regression with P, Q, RES

Use 2-stage-least-squares combined with Lasso

1st stage: Regress P on RES, wind, pv, load, Pqas, Pcoal, dummies

2nd stage:  $In(Q) = \beta_0 + \beta_1 In\tilde{P}$ 



Lasso regression with P, Q, RES

Use 2-stage-least-squares combined with Lasso

1st stage: Regress P on RES, wind, pv, load, Pqas, Pcoal, dummies

2nd stage:  $In(Q) = \beta_0 + \beta_1 In\tilde{P}$ 

 $\rightarrow \beta_1$  from 2nd stage represents demand elasticity



Lasso regression with P, Q, RES

Use 2-stage-least-squares combined with Lasso

1st stage: Regress P on RES, wind, pv, load, Pqas, Pcoal, dummies

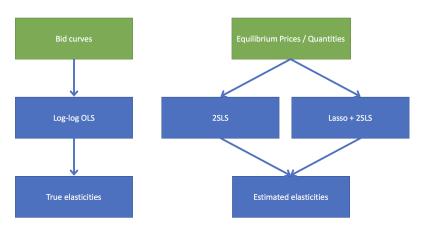
2nd stage:  $In(Q) = \beta_0 + \beta_1 In\tilde{P}$ 

 $ightarrow eta_1$  from 2nd stage represents demand elasticity

Note: Computing standard errors of the estimation in this setting is non-trivial and requires the use of Bayesian Lasso. (*Park and Casella [2008]*).



### Overview of empirical methods





## Yearly results (Peak hours)

| Model             | Estimate          | Std. Error | p-value |
|-------------------|-------------------|------------|---------|
| True estimate     | -0.38             | _          | _       |
| OLS               | -0.23             | 0.024      | <0.01   |
| OLS, control load | -0.37             | 0.048      | < 0.01  |
| 2SLS, RES         | -0.45             | 0.011      | < 0.01  |
| 2SLS, RES, hours  | -0.37             | 0.012      | < 0.01  |
| 2SLS, Lasso       | -0.36             | 0.003      | < 0.01  |
| Observations      | 2*8760            |            |         |
| 1st stage F-tests | 1066*** / 1143*** |            |         |
|                   |                   | •          |         |



## Yearly results (Off-Peak hours)

| Model                                 | Estimate          | Std. Error | p-value |
|---------------------------------------|-------------------|------------|---------|
| True estimate                         | -0.39             | _          | _       |
| OLS                                   | -0.07             | 0.16       | <0.01   |
| OLS, control load                     | -0.13             | 0.031      | < 0.01  |
| 2SLS, RES                             | -0.43             | 0.026      | < 0.01  |
| 2SLS, RES, hours                      | -0.39             | 0.038      | < 0.01  |
| 2SLS, Lasso                           | -0.39             | 0.0042     | < 0.01  |
| Observations                          | 2*8760            |            |         |
| 1st stage F-tests                     | 1120*** / 1371*** |            |         |
| · · · · · · · · · · · · · · · · · · · | •                 | <u> </u>   | •       |



■ The **supply shifting effect** of renewables is especially prominent during the winter months



- The supply shifting effect of renewables is especially prominent during the winter months
- For summer months and off-peak periods, the combination of Lasso Regression and 2SLS performs significantly better than classical 2SLS



- The supply shifting effect of renewables is especially prominent during the winter months
- For summer months and off-peak periods, the combination of Lasso Regression and 2SLS performs significantly better than classical 2SLS
- Summer months in general harder to fit (bigger deviation from true elasticity and bigger standard errors)



- The supply shifting effect of renewables is especially prominent during the winter months
- For summer months and off-peak periods, the combination of Lasso Regression and 2SLS performs significantly better than classical 2SLS
- Summer months in general harder to fit (bigger deviation from true elasticity and bigger standard errors)
- For winter months, there is no substantial difference between 2SLS and Lasso+2SLS, apart from lower standard errors → In periods of instrument weakness, regularization provides significant amelioration



- The supply shifting effect of renewables is especially prominent during the winter months
- For summer months and off-peak periods, the combination of Lasso Regression and 2SLS performs significantly better than classical 2SLS
- Summer months in general harder to fit (bigger deviation from true elasticity and bigger standard errors)
- For winter months, there is no substantial difference between 2SLS and Lasso+2SLS, apart from lower standard errors → In periods of instrument weakness, regularization provides significant amelioration
- There are no substantial differences between peak and off-peak elasticity for the observed period



- The supply shifting effect of renewables is especially prominent during the winter months
- For summer months and off-peak periods, the combination of Lasso Regression and 2SLS performs significantly better than classical 2SLS
- Summer months in general harder to fit (bigger deviation from true elasticity and bigger standard errors)
- For winter months, there is no substantial difference between 2SLS and Lasso+2SLS, apart from lower standard errors → In periods of instrument weakness, regularization provides significant amelioration
- There are no substantial differences between peak and off-peak elasticity for the observed period
- Locality of Instrumental Variable can yield biased resultst



■ Investigate which functional form is suited best (non-isoelastic?)



- Investigate which functional form is suited best (non-isoelastic?)
- Measure for locality of IV? Can we infer it without having true bid curves?



- Investigate which functional form is suited best (non-isoelastic?)
- Measure for locality of IV? Can we infer it without having true bid curves?
- Out-of-sample comparisons



- Investigate which functional form is suited best (non-isoelastic?)
- Measure for locality of IV? Can we infer it without having true bid curves?
- Out-of-sample comparisons
- Possibly other demand and supply shifters or a combination thereof?



Thanks for your attention!

16/16

## Literature



J.D. Angrist and A.B. Kruger. Instrumental variables and the search for identification: From supply and demand to natural experiments. Journal of Economic Perspectives, 15:238–252, 2001.

Alexandre Belloni, Victor Chernozhukov, and Christian Hansen. Lasso methods for gaussian instrumental variables models. 2011.

L. Einav and J. Levin. Empirical industrial organization: A progress report. Journal of Economic Perspectives, 24:145-162, 2010.

M. Lijesen. The real-time price elasticity of electricity. Energy Economics, 29:249-258, 2007.

Trevor Park and George Casella. The bayesian lasso. Journal of the American Statistical Association, 103(482):681-686, 2008.



### **Market description**

EPEX day-ahead auction market in Germany



### **Market description**

EPEX day-ahead auction market in Germany

Underlying: Electricity for delivery the next day, one particular hour



### **Market description**

EPEX day-ahead auction market in Germany

Underlying: Electricity for delivery the next day, one particular hour

Orders: Up to 256 price / quantity combinations for each hour



### **Market description**

EPEX day-ahead auction market in Germany

Underlying: Electricity for delivery the next day, one particular hour

Orders: Up to 256 price / quantity combinations for each hour

Price range fixed



### **Market description**

EPEX day-ahead auction market in Germany

Underlying: Electricity for delivery the next day, one particular hour

Orders: Up to 256 price / quantity combinations for each hour

Price range fixed

### Available data:



### **Market description**

EPEX day-ahead auction market in Germany

Underlying: Electricity for delivery the next day, one particular hour

Orders: Up to 256 price / quantity combinations for each hour

Price range fixed

### Available data:

All hourly bids / asks 2014–2015



### **Market description**

EPEX day-ahead auction market in Germany

Underlying: Electricity for delivery the next day, one particular hour

Orders: Up to 256 price / quantity combinations for each hour

Price range fixed

### Available data:

- All hourly bids / asks 2014–2015
- Equilibrium prices / quantities, hourly, 2014–2015



### Market description

EPEX day-ahead auction market in Germany

Underlying: Electricity for delivery the next day, one particular hour

Orders: Up to 256 price / quantity combinations for each hour

Price range fixed

#### Available data:

- All hourly bids / asks 2014–2015
- Equilibrium prices / quantities, hourly, 2014–2015
- 3 Total renewables generation, hourly, 2014–2015