IAEE SESSION 7A: CLIMATE VII POTENTIAL AND COSTS FOR CO2 MITIGATION FOR REFINERIES IN EU-28 FOR 2050

Fraunhofer Institute for Systems and Innovation Research ISI

Solbin Kim, Fraunhofer ISI
Matthias Rehfeldt, Fraunhofer ISI
Andrea Herbst, Fraunhofer ISI
06.09.2017, Vienna, Austria

Source: EPA

Motivation

- The European Council's reconfirmation of the EU objective of GHG mitigation by 80-95% until 2050 compared to 1990
- In EU emissions trading system (EU ETS), the refinery sector has 130 installations emit 130 Mt in 2015: 25% of emissions accounted for by industrial activities in the EU ETS
- Yet, comprehensive analysis on energy demand, CO₂ emissions, CO₂ mitigation potential and costs has not been studied for the European refinery sector at the plant level.

Research Questions

- 1. What is EU Refineries' status-quo in terms of production, energy demand and CO₂ emission on site-level?
- 2. How could the energy demand and CO₂ emission of the EU refineries change, driven by the production projection until 2050 under various scenarios?
- 3. What are the potential and costs for the EU refineries to reduce CO₂ emissions by employing energy saving options under various diffusion conditions?

Page 3

Figure 1. Research methodology based on bottom-up approach.

Methodology - Status-Quo Data: Categorization

Figure 2. capacity share, process configuration and product slates of categories.

Note: CDU- Crude Distillate Unit, RF- Reforming unit, DSU- Desulfurization unit, FCCU- Fluid catalytic cracking unit, HCU- Hydrocracking unit.

Figure 1. Research methodology based on bottom-up approach.

Methodology- Main Drivers

Figure 3. Main driver definition by main uses of the refinery products.

Figure 1. Research methodology based on bottom-up approach.

Methodology-Correlations

Table 2. Main driver correlations to the refinery products.

Product	Main use	Main driver		
LPG	Industry, heating and power	Gross value added (GVA), elasticity, Energy demand and fuel mix		
Naphtha	Industry	GVA, elasticity		
Gasoline	Transportation	Gasoline demand		
Jet A1	Transportation	Kerosene demand		
Diesel	Transportation	Diesel demand		
Heating Oil	Heating & power	Energy demand, fuel mix of residential sector		
HFO (Low sulfur and high sulfur)	Heating & power	Energy demand, fuel mix of residential sector		
Bunker (Low sulfur and high sulfur)	Transportation	Energy demand from inland navigation, fuel substitution by LNG		
Bitumen, sulfur, coke	Industry	Proportional production linked to gasoline		

Figure 1. Research methodology based on bottom-up approach.

Methodology- Reference Scenario

$$P_{p,n,g,c,y} = P_{p,n,g,c,y-1} * (1 + \Delta E D_{p,n,c,y})$$

With:

- Δ ED (%) as the annual change of the product demand.

-index: p as the specific product (jet fuel, gasoline, diesel and heavy fuel oil)

$$E_{r,c,y} = E_{r,c,B} * P_{t,n,g,c,y}$$

$$e_{r,c,y} = e_{r,c,B} * P_{t,n,g,c,y}$$

With:

-E (toe) as the energy demand

-P (2015=100) as the relative production

-Indices: r as the refinery, c as the country and y as the year, B as the base year, t as the total, n as the complex, g as the geographical category.

Methodology- Main Drivers for Reference Scenario

Figure 4. Change of activities as main drivers for EU-28 from EU reference scenario 2016

Figure 1. Research methodology based on bottom-up approach.

Methodology- Policy Scenario

Comparison of two scenarios:

- Decarbonization scenario in EU Roadmap (European Commission, 2011)
- 2. Reference scenario in EU Reference scenario (Vita et al., 2016)

Inputs for the policy scenario:

- Fuel mix change in transportation sector and residential sector
- Efficiency increase in industry sector

Figure 5. Fuel mix change comparison in road transportation in 2050.

Figure 1. Research methodology based on bottom-up approach.

Methodology-Energy Saving Options

- From the literature Morrow III et al. (2013) Assessment of Energy Efficiency Improvement in the United States Petroleum Refining Industry
- Five energy saving options were chosen based upon penetration rate, total fuel savings.

Table 3. Characterization of energy saving options.

Number	Name	Fuel saving	Electricity saving	Payback period (year)
1	Installation of new internals	0-1.57 %	0.00-1.00 %	0.7
2	Flare gas recovery	1.09 %	0.67 %	2.0
3	Improvement of catalysts	0.20-1.17 %	0.01-0.13 %	1.0
4	Revamp heat integration	0.00-0.05 %	0.00-0.59 %	2.0
5	Installation of furnace air pre-heat	0.09-0.10 %	0.00 %	3.0

Note: Adopted from Morrow III et al. (2013).

Figure 1. Research methodology based on bottom-up approach.

Result-Status Quo

Figure 6. Status-quo of energy demand of refineries in EU-28 by the categories in 2015.

Result- Production Projection

Figure 7. Production projection by complex in the reference scenario and policy scenario.

Result- Scenarios With Saving Potential

Figure 8. Energy demand projection in the reference and policy scenario with saving potential

Conclusion

- The study contributes to energy system research by;
 - First, bottom-up approach to model the refinery sector on site-level.
 - Second, projection methodology using production development.
 - Finally, calculation of energy saving and CO₂ mitigation potential of applying ESOs that are not likely employed yet, under different diffusion cases.
- Further research:
 - Elaboration of the correlations between demands and production (considering international trades).
 - Economic structure of refineries by type.

Page 21

Bottom-up approach

Refinery status-quo

Energy demand

Categorization

CO2 emission

Production

Scenario Analysis

Energy saving & Mitigation potential

ESOs Payback period

Main drivers correlations
Production projection
Reference scenario

Policy scenario

Technical diffusion Economic diffusion

