On the relevance of electricity balancing markets in Europe

A 2030 perspective

André Ortner, Gerhard Totschnig

André Ortner
Energy Economics Group
T: +43 1 58801 370367
ortner@eeg.tuwien.ac.at

Motivation

- Short-term electricity markets gain importance
- One reason is ongoing integration of increasing shares of variable renewable electricity (vRES)

Source: EPEX and APX annual reports, ENTSO-E transparency platform

Research questions

Competing forces drive the development of balancing markets

- Pos: Additional deployment of variable RES
- Neg: Imbalance Netting, Market coupling, Flexibility, Quality of forecasts
- How large is the overall monetary market volume of electricity balancing markets as compared to day-ahead markets in various European countries with high shares of variable renewable electricity?
- How is this volume impacted by different assumptions on the level of international cooperation?
- How significant are revenues from balancing markets for different generation technologies?

Applied methodology

Balancing demand projection to 2030

- Variable RES: Application of ARIMAX models to capture characteristics of historic forecast error time series
- Conventional generators: Generated based on statistics of historical forced outage rates
- Electricity demand: Forecast errors drawn from fitted hyperbolic distribution (Hodge 2013)

Development of 2x2 scenarios

- Dimension 1: Textbook development of spot markets vs. currently ongoing trends
- Dimension 2: EU-wide vs. national balancing markets

3. Application of EU-electricity market model *HiREPS*

- Method: 3-model modes (DA, ID, IB) operated in rolling planning modus (myopic approach)
- Input: Power plant database, Transmission grid model, Exogenous demand time series
- Output: Real-time prices, market volume, generator revenues from electricity balancing

Assumptions on the future RES-E deployment

- Most likely development of RES-E in the EU until 2030 (27% target)
- Source: EU-funded project Towards2030 (<u>www.towards2030.eu</u>)

Application of ARIMAX models

Example: Wind forecast errors

Wind generation in % of installed capacity

Comparison of modeled and historical data

Projecting Balancing Demand

 Application of ARIMAX models to capture characteristics of historic forecast error time series

Considered scenarios

Regulatory Framework 2030 Optimal

- Currently ongoing process, GLEB (ACER), EB (ENTSO-E),
 3rd energy package (EC)
- Proposals of TSOs how to implement harmonized product definitions for "Coordinated Balancing Areas" (CoBAs)

Market design

- EC urges to produce a credible "real-time price" reflecting value of flexibility and amount of ex-ante capacity reservation should be minimized
- Ongoing trends towards the EU
 internal electricity wholesale
 market (grid extensions, capacity
 markets, demand-side
 participation, ...)

Market design and regulations (Dimension 1)

Scenario 2:

Mature markets

Efficient markets with national electricity balancing

Scenario 1:

Maximum welfare

Fully integrated electricity market across EU, without any market distortions

Scenario 4:

Conservative path

Diverse market designs and national electricity balancing

Scenario 3:

Progressive TSOs

Efficient electricity balancing across EU in diverse market designs

No cooperation

Balancing mechanism (Dimension 2)

EU-wide cooperation

Results on market relevance

 Share of balancing market volume on day-ahead market volume in 2030

Results by technology

Share of balancing market revenues on day-ahead market

revenues in 2030

Optimal design

Spot markets

4

Balancing market

EU-wide cooperation

1

3

Conclusions

- Although demand for balancing energy increases up to 2030, electricity balancing will still remain a niche market
- Revenues from electricity balancing can become a relevant source of income for storages and wind power
- Market design and market coupling decisively impacts efficiency of balancing markets

Appendix

Motivation

- Short-term electricity markets gain importance
- One reason is ongoing integration of increasing shares of variable renewable electricity (vRES)

Exchange-traded electricity volumes related to gross electricity consumption

Source: EPEX and APX annual reports, ENTSO-E transparency platform

Example: Wind forecast errors

 Historic generation forecast error of wind onshore in Austria in the year 2016

Wind generation in % of installed capacity

Applied market model

Operation modes of HiREPS

Day-ahead market

Intra-day market

Balancing market

Design	Uniform price auction	Uniform price auction	Uniform price auction	
Uncertain data input	24-hour forecasts (= day-ahead profiles)	Day-ahead profiles + difference between 24h forecasts and hourly forecasts (= intra-day profiles)	Intra-day profiles + difference between hourly forecasts and real- time profiles	
Time resolution	1 hour	1 hour	5 minutes	
Modeled time period	1 week for each month	1 week for each month	1 week for each month	
Model approach	Representation of whole time period in 1 model run	1 model run for each hour in the time period (Rolling horizon)	1 model run for each 5min-window in the time period (Rolling horizon)	
Results	 Day-ahead prices Storage reservoir levels Cross-border flows and remaining transmission capacity 	 Intra-day prices considering unplanned outages until next day and day- ahead forecast errors Updated cross-border flows and remaining transmission capacity 	 Real-time electricity prices considering unplanned outages for 1 hour and intra-day forecast errors Available cross-border capacity subject to scenario analysis 	

Outage statistics of conventional power plants

Table 4.1.: Assumptions related to unplanned outages of conventional power plants. Sources: (NERC, 2015; CEA, 2007)

	[MW]	[%]	[hours]
Technology	Typical size	FOR	MFOD
Run-of-River	100	3.96	64.97
Hydro Storage	350	3.96	64.97
Pumped Hydro Storage	350	9.22	64.97
Biomass Extraction Turbine	25	10.00	22.60
Biomass Backpressure Turbine	50	10.00	43.15
Other dispatchable RES	1	5.00	22.60
Gas Combined Cycle	300	4.71	22.60
Gas turbine	5	12.00	22.60
Oil	100	26.20	22.60
Coal	500	7.01	43.15
Lignite	600	4.20	43.15
Nuclear power	1500	2.72	518.98