Commodity Pricing: Evidence from Rational and Behavioral Models

Don Bredin¹ Valerio Potì¹ Enrique Salvador²

¹University College Dublin ²Universitat Jaume I

15th IAEE European Conference 2017

Results

- For all 15 commodities we reject the VAR restrictions associated with the long-run model.
- Long-run fundamentals (RAPM) certainly play a role.
- Taking account of heterogenous expectations and investment horizons is important.
- Much greater role played by speculators and rational speculators in particular.

Theory of Storage - Pindyck (2001)

- The value of all commodities (e.g. agricultural or energy), will be determined by the expectation of market scarcity, reflected in the interaction between current supply and demand.
- Commodities are likely to be sensitive to short-term supply bottlenecks or demand pressures.
- Cash market for immediate purchase and sale and a storage market for inventories of the commodity.
- The price of storage is unobserved, but can be determined from the futures-spot spread, marginal value of storage, i.e., the benefits of holding the physical stock.

Theory of Storage - Pindyck (2001)

Return from holding a unit of commodity is;

$$\psi_{t,T} + P_{t+T} - P_t \tag{1}$$

• At the same time short a futures contract written on the same underlying asset. Return on the future;

$$F_{t,T} - P_{t+T} \tag{2}$$

The total return is;

$$\psi_{t,T} + F_{t,T} - P_t \tag{3}$$

The total return is risk-free and non-stochastic;

$$\psi_{t,T} + F_{t,T} - P_t = r_{t,T} P_t
\psi_{t,T} = P_t (1 + r_{t,T}) - F_{t,T}
= P_t e^{r(t,T)(T-t)} - F_{t,T}$$
(4)

Rational Asset Pricing Model (RAPM)

- Commodity prices can be defined as the present value of expected future 'payoffs' associated with holding the commodity.
- Commodity prices will change when there is changes in expected futures 'payoffs' and/or changes to the discount factor.

$$P_t = \sum_{i=1}^{\infty} \delta_t^i E_t \psi_{t+i} \tag{5}$$

- with $\delta_t^i = \frac{1}{1+\mu_t}$
- The normal application in equity markets would adopt the cash flows (dividends) as the payoffs.
- Here the benefits that accrue to the holder of a storable commodity, the convenience yield, see Pindyck (1993).

RAPM

 Drawing on Campbell and Shiller (1989), we take our version of the dividend-price ratio, the percentage net basis, and apply the test restrictions developed by Campbell and Shiller (1989).
 The percentage net basis is defined as;

$$y_t = \psi_{t-1}/P_t \tag{6}$$

Long-solution

$$y_t^{IL} \approx \sum_{j=0}^{\infty} \beta^j E_t(\beta q_{t+j} - \Delta \psi_{t+j}')$$
 (7)

Alternatives: Investment Horizon and Investors

Speculator - Rational

$$y_t^{SR} \approx \frac{1}{\overline{y}} E_t(q_t) - E_t(\Delta \psi_t') - \frac{1}{\overline{y}} E_t\left(\frac{\Delta P_{t+1}}{P_t}\right)$$

$$= \frac{1}{\overline{y}} \left(E_t(q_t) - E_t\left(\frac{\Delta P_{t+1}}{P_t}\right) \right) - E_t(\Delta \psi_t')$$
(8)

Speculator - Contrarian

$$y_t^{SC} = \frac{1}{\overline{y}} E_t(q_t) - E_t(\Delta \psi_t') + \frac{1}{\overline{y}} E_t\left(\frac{\Delta P_{t+1}}{P_t}\right)$$

$$= \frac{1}{\overline{y}} \left(E_t(q_t) + E_t\left(\frac{\Delta P_{t+1}}{P_t}\right) \right) - E_t(\Delta \psi_t')$$
(9)

Recent Empirical Evidence - Crude Oil

- Sanders and Irwin (2011), Miffre and Brooks (2013) and Brooks et al. (2015) all find evidence against speculative effects and consistent with fundamentals-based rational valuation.
- Both Smith (2009) and Kilian and Murphy (2014) find no empirical evidence to indicate that speculation increased oil prices.
- Juvenal and Petrella (2015) and Hamilton (2009a,b) find evidence in favour of speculation as well as economic fundamentals played a significant role in the oil price increase during the 2004-08 period.
- Knittel and Pindyck (2016) find that speculation certainly played a role in the 2004-08 oil price increase, but was not the only contributor of the price increases.

Data

- 15 commodities covering agriculture, softs, energy and metals.
- Sample where possible covers the period from 1971 to 2014.
- Corn, Oats, Soybeans, Soybean Oil, Wheat, Coffee, Cotton, Lumber, Orange Juice, Natural Gas, Heating Oil, Crude Oil, Copper, Gold and Silver.
- Commodities Research Bureau (CRB)

Crude Oil

Results 1

	Heating Oil	Crude Oil						
	1979-2014	1983-2014						
Panel A: Unit Root Test								
P_t	0.617	0.226						
ΔP_t	-18.856***	-16.419***						
F_t	0.683	0.278						
ΔF_t	-17.374***	-16.277***						
ψ_t	-9.526***	-6.864***						
$\Delta \psi_t$	-25.843***	-22.392***						
$S(\hat{ ho})$	-9.594***	-7.089***						
$S(\bar{ ho})$	-9.303***	-7.089***						
$S'(\hat{\mu})$	-8.661***	-5.779***						
$S'(\bar{\mu})$	-9.527***	-6.815***						

VAR Model 1: Constant Expected Returns

$$y_t' \approx \sum_{j=0}^{\infty} \beta^j E_t (\beta \overline{r} - \Delta \psi_{t+j}')$$
 (10)

• The PNB predicts the variable $\phi_t = \beta \overline{r} - \Delta \psi_t'$. We therefore model both as the endogenous variables in VAR;

$$y'_{t} = \gamma_{01} + \sum_{k=1}^{p} \gamma_{11k} y'_{t-k} + \sum_{k=1}^{p} \gamma_{12k} \phi_{t-k} + \varepsilon_{1,t}$$

$$\phi_{t-1} = \gamma_{02} + \sum_{k=1}^{p} \gamma_{21k} y'_{t-k} + \sum_{k=1}^{p} \gamma_{22k} \phi_{t-k} + \varepsilon_{2,t}$$
(11)

Results 2

	Heating Oil	Crude Oil						
Panel A: Summary Statistics								
$ar{\psi}$	0.1086	0.0425						
$ar{P}_t$	114.62	41.55						
$\bar{y} = \overline{\psi_{t+1}/P_t}$	0.0041	0.0051						
$\beta = 1/(1+\bar{y})$	0.9959	0.9949						
$ar{\phi}$	-0.0038	0.0288						
Panel B: VAR Restrictions								
Wald Test - Model 1	112.51***	56.92***						
Wald Test - Model 2	247.48***	108.22***						
Wald Test - Model 3	142.66***	79.82***						
Wald Test - Model 4	140.85***	72.44***						
Wald Test - Model 5	157.17***	80.30***						
Wald Test - Model 6	158.98***	76.38***						

Results 3: Individual versus Heterogenous Agent Models (with constant discount rate)

	Long-Run Rational		Short-run Rational		Short-run Contrarian			Heterogenous Agent				
	VR	ρ	R^2	VR	ρ	R^2	VR	ρ	R^2	VR	ρ	R^2
Heating Oil	2.430	0.495	0.572	1.793	0.745	0.197	2.312	-0.136	0.209	1.217	0.890	0.793
Crude Oil	3.304	0.708	0.569	1.830	0.619	0.033	2.737	-0.030	0.254	1.178	0.770	0.607

Crude Oil - Heterogenous Agent Weights

Results Summary

- Consistent rejection of the VAR restrictions associated with the long-run model.
- Taking account of heterogenous expectations and investment horizons is important.
- Long-run fundamentals (RAPM) certainly play a role.
- Much greater role played by speculators and rational speculators in particular.