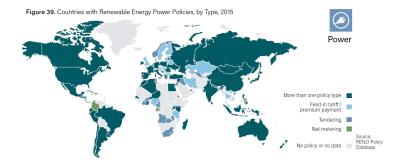
#### 15th IAEE European Conference 2017

# Pure or Hybrid?: Policy Options for Renewable Energy <sup>1</sup>

Ryuta Takashima<sup>a</sup> Yuta Kamobayashi<sup>a</sup> Makoto Tanaka<sup>b</sup> Yihsu Chen<sup>c</sup>

<sup>a</sup>Department of Industrial Administration, Tokyo University of Science, Chiba, Japan
 <sup>b</sup>National Graduate Institute for Policy Studies (GRIPS), Tokyo, Japan
 <sup>c</sup>Department of Technology Management, University of California SantaCruz, Santa Cruz, CA, USA

#### 5 September 2017


<sup>&</sup>lt;sup>1</sup>Supported by the Grant-in-Aid for Scientific Research (B) (Grantno.15H02975) from Japan Society for the Promotion of Science

#### Introduction

#### **Motivation**

- Recently policymakers have implemented various policies for reducing greenhouse gas emissions.
  - Concerns about global warming and climate change
- Policies for supporting and promoting renewable energy
  - Feed-in tariff: FiT
  - Feed-in premium
  - FiT-contract for difference
  - Renewable portfolio standards: RPS
  - → Directly impact the power prices and outputs by favoring power produced by renewables.
- → What is the difference among those policies?





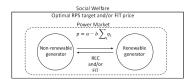
- REN21 "Renewables 2016 Global Status Report"
  - Many countries have implemented more than one policy.
  - → There is a need to understand their market impacts and compare to either RPS or FiT alone.

## Relationship between renewable energy policy scheme and market equilibrium

- Fischer (2010): Effect of RPS on market equilibrium in perfect competitive markets
- Tanaka and Chen (2013): Allow for the market power in Stackelberg equilibrium
- Hibiki and Kurakawa (2013): Compare social welfare under FiT and RPS
- Siddiqui, Tanaka, and Chen (2016): Provide the endogenous setting of the RPS target from a policymaker's perspective.

#### Policy mix

 Böhringer and Behrens (2015): Interactions between emission caps and renewable energy polies


#### Research Objective

- Examine the efficiency of the "hybrid" policy consisting of RPS and FiT.
  - ullet Compare it to the "pure" policy scheme o either RPS or FiT
  - Derive optimal RPS target, and FiT price.
- → RQ: Which policy is efficient for social welfare?

#### **Problem Formulation**

#### **Assumption and Setting**

- Consider two types of power producers in the electricity industry:
  - Non-renewable: NRE
  - Renewable: RE
- Setting of the market competition: Cournot except FiT scheme
- These two types of producers are jointly subject to a RPS requirement while only the RE producer is supported by the FiT scheme.
- → The RE generator's profit is indirectly impacted by the power price through the FiT scheme.



#### Assumption and Setting (cont'd)

- Quadratic production cost function:
  - NRE:  $c_n(q_n) = \frac{1}{2}c_nq_n^2$
  - RE:  $c_r(q_r) = \frac{1}{2}c_r^2q_r^2$ 
    - q<sub>n</sub>: NRE production (MWh)
    - q<sub>r</sub>: RE production (MWh)
    - $c_n < c_r$
- Electricity price:
  - $p(q_n, q_r) = a b(q_n + q_r)$ 
    - a: Intercept of the inverse demand function (\$/MWh)
    - b: Slope of inverse demand function (dollar/MWh<sup>2</sup>)
- Damage cost of greenhouse gas emissions:
  - Quadratic function of output:  $d(q_n) = \frac{1}{2}kq_n^2$ 
    - k: Rate of increase in marginal damage cost (\$/MWh²)

- Central planning (CP): Benchmark case
  - A central planner simultaneously decides outputs for all power generations by maximizing the social welfare.

#### FIT

 Only the RE generator is supported by the FiT that is optimally determined by the government at the upper level.

#### RPS

- At lower level, NRE and RE generators choose the outputs subject to the RPS target determined by the government at the upper level by maximizing social welfare.
- Hybrid Policy (HP)
  - NRE and RE generators decide their outputs subject to a combination of RPS and FiT with both the RPS target and the FiT price determined by the government.

#### The Model

CP

#### **CP**

 The CP selects generation of either type in order to maximise SW by solving the following QP:

$$\max_{q_n \geq 0, q_n \geq 0} \int_0^{q_n + q_r} p(q')dq' - c_n\left(q_n\right) - c_r\left(q_r\right) - d_n\left(q_n\right)$$

KKTconditions:

$$0 \le q_n \perp -a + b(q_n + q_r) + c_n q_n + k q_n \ge 0$$
  
$$0 \le q_r \perp -a + b(q_n + q_r) + c_r q_r \ge 0$$

Optimal interior solutions:

$$q_n^* = \frac{ac_r}{b(c_n + c_r + k) + c_r(c_n + k)}$$

$$q_r^* = \frac{a(c_n + k)}{b(c_n + c_r + k) + c_r(c_n + k)}$$

$$p^* = \frac{ac_r(c_n + k)}{b(c_n + c_r + k) + c_r(c_n + k)}$$

Output ratio of electricity from renewable sources:

$$\alpha^* = \frac{c_n + k}{c_n + c_r + k}$$

#### Profit maximisation:

FIT: Lower-level

$$\max_{q_n \ge 0} \quad p(q_n + q_r) - c_n(q_n) - p^{FIT}q_r$$

$$\max_{q_r \ge 0} \quad p^{FIT}q_r - c_r(q_r)$$

KKTconditions:

$$0 \le q_n \perp -a + 2b (q_n + q_r) + c_n q_n \ge 0$$
  
$$0 \le q_r \perp -p^{FIT} + c_r q_r \ge 0$$

$$egin{aligned} \hat{q}_n &= rac{ac_r - 2bp^{FIT}}{c_r \left(2b + c_n
ight)} \ \hat{q}_r &= rac{p^{FIT}}{c_r} \ \hat{p} &= rac{ac_r \left(b + c_n
ight) - bc_n p^{FIT}}{c_r \left(2b + c_n
ight)} \end{aligned}$$

#### FIT: Upper-level

Social welfare maximisation:

$$\begin{split} \max_{\left\{p^{FIT}>p\right\}\cup\left\{q_{n},q_{r}\right\}} & \int_{0}^{q_{n}+q_{r}} p(q')dq'-c_{n}\left(q_{n}\right)-c_{r}\left(q_{r}\right)-d_{n}\left(q_{n}\right) \\ \text{s.t} & 0\leq q_{n}\perp-a+2b\left(q_{n}+q_{r}\right)+c_{n}q_{n}\geq0 \\ & 0\leq q_{r}\perp-p^{FIT}+c_{r}q_{r}\geq0 \end{split}$$

KKTcondition:

FIT: Upper-level

$$\begin{split} \frac{ac_{n}}{c_{r}\left(2b+c_{n}\right)} - \frac{bc_{n}\left(ac_{r}+c_{n}p^{FIT}\right)}{c_{r}^{2}\left(2b+c_{n}\right)^{2}} \\ + \left(c_{n}+k\right) \frac{2b\left(ac_{r}-2bp^{FIT}\right)}{c_{r}^{2}\left(2b+c_{n}\right)^{2}} - \frac{p^{FIT}}{c_{r}} = 0 \end{split}$$

$$\hat{p}^{FIT} = \begin{cases} \hat{p} & (p^{FIT} < \hat{p}) \\ \frac{ac_r(3bc_n + 2bk + c_n^2)}{c_r(2b + c_n)^2 + 4b^2(c_n + k) + bc_n^2} & (p^{FIT} \ge \hat{p}) \end{cases}$$

#### **RPS:** Lower-level

Profit maximisation:

$$\max_{\substack{q_n \ge 0}} pq_n - c_n (q_n) - \alpha p^{REC} q_n$$

$$\max_{\substack{q_r \ge 0}} pq_r - c_r (q_r) + (1 - \alpha) p^{REC} q_r$$

KKTconditions:

$$0 \le q_n \perp -a + b(q_n + q_r) + bq_n + c_n q_n + \alpha p^{REC} \ge 0$$
  
$$0 \le q_r \perp -a + b(q_n + q_r) + bq_r + c_r q_r - (1 - \alpha) p^{REC} \ge 0$$

Market clearing condition for REC:

$$0 \le p^{REC} \perp q_r - \alpha(q_n + q_r) \ge 0$$

$$\begin{split} \bar{q}_n &= \frac{a \left(1-\alpha\right)}{\left(2 b + c_n + c_r\right) \alpha^2 - 2 \left(b + c_n\right) \alpha + \left(2 b + c_n\right)} \\ \bar{q}_r &= \frac{a \alpha}{\left(2 b + c_n + c_r\right) \alpha^2 - 2 \left(b + c_n\right) \alpha + \left(2 b + c_n\right)} \\ \bar{p}^{REC} &= \frac{a \left[\left(2 b + c_n + c_r\right) \alpha - \left(b + c_n\right)\right]}{\left(2 b + c_n + c_r\right) \alpha^2 - 2 \left(b + c_n\right) \alpha + \left(2 b + c_n\right)} \\ \bar{p} &= \frac{a \left[\left(2 b + c_n + c_r\right) \alpha^2 - 2 \left(b + c_n\right) \alpha + \left(b + c_n\right)\right]}{\left(2 b + c_n + c_r\right) \alpha^2 - 2 \left(b + c_n\right) \alpha + \left(2 b + c_n\right)} \end{split}$$

RPS: Upper-level

#### RPS: Upper-level

#### Social welfare maximisation:

$$\begin{aligned} \max \{ 0 &\leq \alpha \leq 1 \} \cup \{q_n, q_r\} \cup \{p^{REC}\} \\ & \int_0^{q_n + q_r} p(q') dq' - c_n \ (q_n) - c_r \ (q_r) - d_n \ (q_n) \\ \text{s.t} & 0 &\leq q_n \perp -a + b \ (q_n + q_r) + b q_n + c_n q_n + \alpha p^{REC} \geq 0 \\ & 0 &\leq q_r \perp -a + b \ (q_n + q_r) + b q_r + c_r q_r - (1 - \alpha) \ p^{REC} \geq 0 \\ & 0 &\leq p^{REC} \perp q_r - \alpha (q_n + q_r) \geq 0 \end{aligned}$$

#### KKTcondition:

$$\begin{split} \frac{1}{F\left(\alpha\right)^3} \left[ (4b + c_n + c_r - k) \left(2b + c_n + c_r\right) \alpha^3 \right. \\ \left. - 3 \left(2b + c_n - k\right) \left(2b + c_n + c_r\right) \alpha^2 \right. \\ \left. + \left(8b^2 + 3c_n^2 - 4bk - 3kc_n + 10bc_n + 4bc_r + c_nc_r - 2kc_r\right) \alpha \\ \left. - \left(2b^2 + 4bc_n + c_n^2 - kc_n\right) \right] = 0 \end{split}$$

• 
$$F(\alpha) = (2b + c_n + c_r) \alpha^2 - 2(b + c_n) \alpha + (2b + c_n)$$

#### **HP:** Lower-level

Profit maximisation:

$$\max_{\substack{q_n \geq 0}} p(q_n + q_r) - c_n(q_n) - p^{FIT}q_r - (\alpha q_n - q_r) p^{REC}$$

$$\max_{\substack{q_r \geq 0}} p^{FIT}q_r - c_r(q_r) + (1 - \alpha) p^{REC}q_r$$

KKTconditions:

$$\begin{split} & 0 \leq q_n \perp -a + 2b \left( q_n + q_r \right) + c_n q_n + \alpha p^{REC} \geq 0 \\ & 0 \leq q_r \perp -p^{FIT} + c_r q_r - (1 - \alpha) \, p^{REC} \geq 0 \end{split}$$

• Market clearing condition for REC:

$$0 \leq p^{REC} \perp 2q_r - \alpha(q_n + q_r) \geq 0$$

$$\begin{split} \dot{q}_{n} &= \frac{\left(2-\alpha\right)\left[\left(p^{FIT}-a\right)\alpha+a\right]}{\left(c_{n}+c_{r}\right)\alpha^{2}+\left(4b+3c_{n}\right)\alpha+2\left(2b+c_{n}\right)} \\ \dot{q}_{r} &= \frac{\alpha\left[\left(p^{FIT}-a\right)\alpha+a\right]}{\left(c_{n}+c_{r}\right)\alpha^{2}+\left(4b+3c_{n}\right)\alpha+2\left(2b+c_{n}\right)} \\ \dot{p}^{REC} &= \frac{\left(c_{n}p^{FIT}+ac_{r}\right)\alpha-2\left(2b+c_{n}\right)p^{FIT}}{\left(c_{n}+c_{r}\right)\alpha^{2}+\left(4b+3c_{n}\right)\alpha+2\left(2b+c_{n}\right)} \\ \dot{p} &= \frac{\left[a\left(c_{n}+c_{r}\right)\right]\alpha^{2}-\left[a\left(2b+3c_{n}\right)+2bp^{FIT}\right]\alpha+2a\left(b+c_{n}\right)}{\left(c_{n}+c_{r}\right)\alpha^{2}+\left(4b+3c_{n}\right)\alpha+2\left(2b+c_{n}\right)} \end{split}$$

#### HP: Upper-level

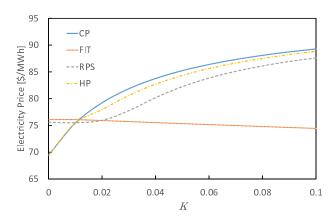
#### Social welfare maximisation:

$$\begin{aligned} \max \{ p^{FIT} > p, 0 \leq & \alpha \leq 1 \} \cup \{ q_n, q_r \} \cup \{ p^{REC} \} \\ & \int_0^{q_n + q_r} p(q') dq' - c_n \left( q_n \right) - c_r \left( q_r \right) - d_n \left( q_n \right) \\ \text{s.t} & 0 \leq q_n \perp - a + 2b \left( q_n + q_r \right) + c_n q_n + \alpha p^{REC} \geq 0 \\ & 0 \leq q_r \perp - p^{FIT} + c_r q_r - (1 - \alpha) \ p^{REC} \geq 0 \\ & 0 \leq p^{REC} \perp 2q_r - \alpha (q_n + q_r) \geq 0 \end{aligned}$$

#### KKTconditions:

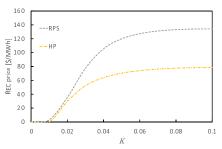
HP: Upper-level

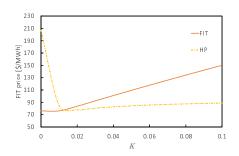
$$\begin{split} & \mathsf{KKTconditions:} \\ & \frac{\alpha \left[ 2aF\left(\alpha\right) - G\left(\alpha\right) H\left(\alpha\right) \right]}{F\left(\alpha\right)^{2}} = 0 \\ & \frac{2a \left[ F'\left(\alpha\right) G\left(\alpha\right) + F\left(\alpha\right) G'\left(\alpha\right) \right] - \frac{1}{2}G\left(\alpha\right) \left[ G\left(\alpha\right) H'\left(\alpha\right) + 2G'\left(\alpha\right) H\left(\alpha\right) \right]}{F\left(\alpha\right)^{2}} \\ & - \frac{2 \left[ 2aF\left(\alpha\right) - \frac{1}{2}G\left(\alpha\right) H\left(\alpha\right) \right] F'\left(\alpha\right) G\left(\alpha\right)}{F\left(\alpha\right)^{3}} = 0 \\ & \bullet \quad F\left(\alpha\right) = \left(c_{n} + c_{r}\right) \alpha^{2} - \left(4b + 3c_{n}\right) \alpha + 2\left(2b + c_{n}\right) \\ & \bullet \quad G\left(\alpha\right) = \left(p^{FIT} - a\right) \alpha + a \end{split}$$


•  $H(\alpha) = 4b + (c_n + k)(2 - \alpha)^2 + c_n \alpha^2$ 

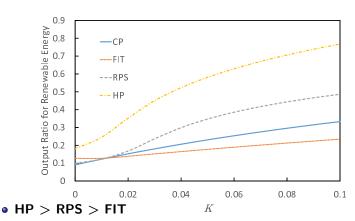
### **Numerical Analysis**

#### **Parameters**


| Intercept of the inverse demand function | $\boldsymbol{a}$ | 100      |
|------------------------------------------|------------------|----------|
| Slope of inverse demand function         | $\boldsymbol{b}$ | 0.01     |
| NRE production                           | $c_n$            | 0.025    |
| RE production                            | $c_r$            | 0.25     |
| Rate of increase in marginal damage cost | $\boldsymbol{k}$ | [0, 0.1] |

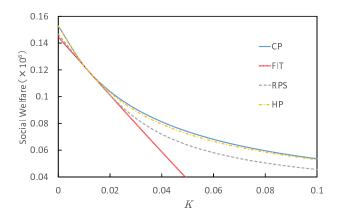

#### **Equilibrium Electricity Price**




- The electricity price for FIT is smaller than those for other policies.
  - Incentive of increases in the productions due to the fixed price
  - NRE sells those in the market

#### **Equilibrium REC and FIT Prices**






- REC price: HP < PRS</li>
  - $\rightarrow$  The demand for REC decreases due to FIT.
- FiT price: HP < PRS</li>
  - FiT price decreases and becomes the same as the electricity price.
  - $\rightarrow$  Mitigate the increases in FiT price due to RPS scheme



- Effect of the REC market and FiT
- FiT scheme
  - NRE needs to produce and sell relatively large electricity in order to buy RE's electricity through FiT.

#### **Social Welfare**



Order of the maximised social welfare: HP > RPS > FIT
 → Large producer surplus and small damage cost

#### **Conclusions**

### Efficiency of the hybrid policies, i.e., RPS and FiT

- Compare it to the single policy scheme (either RPS or FiT)
  - Maximized social welfare for the hybrid policy is greater than those for single policies, e.g., RPS or FiT
  - The ratio of renewable energy output to the non-renewables is greater than that under the single policy.
- Directions for future research
  - Verify findings analytically
  - Extend the model to introduce uncertainty of the demand
  - Allow for investment decisions and capacity choice for renewable energy