Measuring And Explaining Productivity Growth Of Renewable Energy Producers: The case of Austrian Biogas plants

Andreas Eder a,b
Bernhard Mahlberg a,b
Bernhard Stürmer c

^a Institute for Industrial Research, ^b Vienna University of Economics and Business, ^c University College of Agricultural and Environmental Pedagogy

Vienna, September 2017

Background: Renewable Energy in Austria

- European Union climate policy
 - 20% increase in energy efficiency
 - 20% reduction in EU greenhouse gas emissions from 1990 levels
 - 20% of gross final energy consumption from renewable energy
- Production of renewable energy promoted by the EC, as well as national and local governments in the EU (e.g. Austria: green electricity act 2002)
- Target for Austria (directive 2009/28/EG) 2020: 34 %

	2002	2010	2014
Share of Renewable Energy	21 %	27 %	31 %
Share of Biomass (solid, liquid & gas)	5 %	12 %	13 %
Share of Hydro power	11 %	9.5 %	11 %

Table 1: Share of renewable energies in gross energy consumption in Austria

Source: Statistics Austria

Background: Biogas in Austria

- Share of biogas in total renewable gross energy consumption: 1.8 % (2013)
- Development of biogas plants in Austria:

Fig. 1. Number and capacity of biogas plants operating in Austria from 1980 to 2016.

Source: Stürmer (2017)

Background and motivation: Biogas in Austria

 Green electricity act / Feed-in-tariffs are effective in raising renewable electricity generation

Guaranteed feed-in-tariff for electricity expires after 13 years

- Average feed-in-tariff 2016: 17.31 cent / kWh_{el}
- Average market price 2016: ~ 2.70 cent / kWh_{el}
- Green electricity act also aims at making renewable energy technologies ready for the market
- Productivity is an essential determinant of unit costs, profit and competitiveness
- Measuring and understanding productivity growth of biogas plants seems to be a necessary condition to increase their productivity
- Fill gap in the literature

Aim of the study

- Investigating productivity development in the Austria biogas sector from 2006 to 2014
- Finding the **drivers** of productivity change (i.e. efficiency change, technical change, etc.)
- Identifying further influences on productivity change (i.e. meaningful correlates or determinants of productivity change)

Biogas plants: material and energy flows

Input and output measures

Variable	Description		
Inputs			
Feedstock (Nm³ CH ₄)	Aggregated methane content of the substrates, excluding waste. Reflects the energy content of the feedstock.		
Capital (Euros)	Total investments until end of year including e.g. CHP, digesters,		
Labour (h)	Working hours for operating and managing the plant		
Electricity consumption (kWh _{el})	Electricity consumption for operating the plant		
Other costs (Euros)	Include e.g. insurance and maintenance costs		
Outputs			
Electricity sold (kWh _{el})	Amount of Electricity generated by the CHP, fed into grid		
Heat sold (kWh _{th})	Amount of Heat generated by the CHP, externally used		
Waste disposed (t FM)	Amount of industrial bio waste processed		

note: heat consumption, harvesting and transportation of feedstock as well as digestate handling are not covered (due to data unavailability).

Change of average input and output volumes from 2006 to 2014

	2006	2014	% change
Inputs:			
Feedstock (Nm³ CH ₄)	508,530	589,903	16%
Capital (Euros)	1,259,744	1,413,318	12 %
Labour (h)	1,382	1,869	35 %
Electricity Consumption (kWh _{el})	209,304	241,816	16 %
Other costs (Euros)	94,229	135,019	43 %
Outputs:			
Electricity sold (kWh _{el})	1,906,822	2,324,796	22 %
Heat sold (kWh _{th})	370,375	1,307,123	253 %
Waste disposed (t FM)	374	628	68 %

note: number of observation is 65.

Methodology

The following methods are applied:

- Efficiency computed using basic radial Data Envelopment Analysismodels
- Hypothesis test CRS vs. VRS, NIRS vs. VRS (Simar & Wilson 2002)
- Productivity change computed using Malmquist productivity index
- Productivity change decomposed according to Ray and Desli (1997) in
 - pure technical efficiency change
 - o pure technology change
 - scale change factor
- Sources of productivity change identified based on regression analysis

note: CRS ... constant returns to scale, VRS ... variable returns to scale, NIRS ... non-increasing returns to scale

Methodology

Results: Productivity estimates and decomposition

	Productivity change	
Mean	9.4%	
Coefficient of variation	30.8%	
Minimum	-72.6%	
Maximum	138.9%	

Drivers:

	Efficiency change	Technical change	Scale change
Durchschnitt	2.3%	2.2%	4.7%
Coefficient of variation	15.2%	20.9%	12.1%
Minimum	-37.0%	-69.7%	-13.3%
Maximum	53.8%	67.3%	61.5%

note: number of observation is 65.

Results: Distribution of productivity change scores

note: number of observation is 65

Regression model (pooled OLS)

$$PRODCH_{i,t} = \alpha + \beta X_{i,t} + \gamma time + \varepsilon_{i,t}$$

 $i = 1, ..., 65$ $t = 2006-12, 2012-13, 2013-14$

Explanatory Variables X_{i,t}:

- Initial efficiency (in 2006, 2012, 2013)
- Dummies for: i) waste plant, ii) capital subsidy, iii) Austrian federal states
- Age of the plant and age squared (years)
- Size and Δ size (capacity in kW_{el}); investment dummy
- Δ Capacity utilization
- Δ Output concentration (Change in Herfindahl index)
- Δ Capital intensity (Change in capital-labour ratio)
- Δ Feedstock price (feedstock t oTS / feedstock costs)

Regression results

Independent Variables	Dependent Variable	
	PRODCH	
Initial efficiency level	-0.376*** (0.124)	
Δ Size	0.002** (0.001)	
Δ Capacity utilization	0.354** (0.165)	
Δ Output concentration	-0.437*** (0.154)	
Δ Capital intensity/100	0.016*** (0.003)	
Δ Feedstock price	0.001** (0.000)	
R-squared	0.41	
Adj. R-squared	0.35	
Number of obs.	195	

Note: Estimated coefficients of the pooled-OLS model are reported. Standard errors clustered on the plant identifier are shown in parenthesis. p<0.01, ** p<0.05, * p<0.1.

Summary and conclusions

Average **productivity gains of 9.4% (annual growth rate 1.1 %)** of Austrian biogas plants between 2006 and 2014:

- Due to **exploration of returns of scale.** The estimated average scale change factor is 4.7%. Smaller plants have higher scale change factors (catching-up in size).
- Due to Catching-up of less efficient plants: Average pure technical efficiency increased by 2.3%.
- **Small technical change (2.2 %):** In the long-run productivity growth will be exhausted if there is no technical change (frontier shifts)
- Increasing the size (i.e., increasing the nominal installed capacity), labour productivity/automation (i.e., increasing the capital-labour ratio), increasing capacity utilization (i.e. more full load hours or shorter operational interruption), and output-diversification (e.g. increased heat utilization) contribute to productivity growth.

Policy and regulatory implications

Policy makers and regulators should be aware that:

- Biogas plants exhibit increasing returns to scale at small-scale operation (<160 kW_{el}).
- Biogas plants using co-generation units are characterized by positive synergies among power and heat generation, primarily based on fuel savings.

Policies that incentivise

- i) biogas plant operators to diversify and
- ii) scaling up small-sized plants can generate substantial productivity gains

The current FIT-scheme provides no or only weak incentives

Contact

Andreas Eder and Bernhard Mahlberg
Institute for Industrial Research (IWI)

Mittersteig 10/4

1050 Vienna

Austria

Tel.: +43 1 513 44 11 - 2040

E-Mail: Eder@iwi.ac.at and Mahlberg@iwi.ac.at

Appendix: Previous literature

The only published study on productivity change is Rácz and Vestergaard (2016):

- Country: Denmark
- Sample size: 7 to 19 per year (unbalanced panel)
- Observation period: January 1992 to December 2005 (14 years)
- Inputs:
 - Animal Manure
 - Other organic waste
- Outputs:
 - Biogas product
- Main results:
 - Since the expiring of support scheme productivity growth is mainly due to catching-up effects with improvements in both pure technical efficiency and scale efficiency.
 - The biogas plants have optimized their production with very few investments and hence technical progress is absent.

Appendix: Open questions

Investments and technical change are low:

• Implementing Innovations that push the production frontier outwards are highly needed to realise productivity gains in the future. How?

Causality between Investments and Productivity change:

• Are investments low because of low productivity growth. Is productivity growth low because of low investments? (or bidirectional relationship?)

Appendix: Conversion tables for feedstock

The energy content and the content of volatile dry matter per tonne of fresh matter for the various substrates is delivered by the ARGE Biogas and Kompost as follows:

	Ø Nm³ CH₄/t FM	Solids (dry matter)	Volatile solids (% of solids)
Waste	145	24%	85%
Grass	110	33%	93%
Cascading use	85	65%	90%
Maize	115	35%	98%
Other renewables	105	33%	95%
Manure	20	10%	85%

References

Ray S, Desli E. Productivity growth, technical progress and efficiency change in industrialized countries: comment. American Economic Review 1997; 87(5):1033–1039. http://www.jstor.org/stable/2951340

Simar L, Wilson PW. Nonparametric tests of returns to scale. European Journal of Operational Research 2002; 139(1):115–132.

Stürmer, B. Biogas – Part of Austria's future energy supply or political experiment. Renewable and Sustainable Energy Reviews 2017; 79:525–532.