

+++ PRELIMINARY +++ WORK IN PROGRESS +++ PRELIMINARY +++ WORK IN

Electric vehicles and variable renewables

Two building blocks of climate policy

- Decarbonize (individual) mobility
- Integrate growing shares of variable renewable electricity

Energy system perspective...

- Electric vehicles as additional electricity demand
- Electric vehicles as additional flexibility supply

...calls for research needs

- Interaction of electric vehicles and variable renewables
- Tradeoff between additional demand and flexibility supply

Three hypotheses

Demand and flexibility:

- 1) Positive net effect of flexibility for small fleets
- 2) The more renewables, the lower the relative cost increase from larger fleet
- 3) Flexibility benefit decreases in fleet size

... analyzed with the open-source power system model DIETER for Germany

DIETER

DIETER...

- minimizes investment and hourly dispatch costs over one year
- greenfield or brownfield setting
- hourly market clearing and minimum shares of renewable energy

Generation and flexibility options

- thermal and renewable technologies
- different types of storage, demand-side management
- representation of reserves

Linear program

- deterministic, perfect foresight
- this version: no transmission network

DIETER's website

Visit DIETER

- www.diw.de/dieter
- DIETER is open-source
- code under MIT license

Past and current applications

- energy storage requirements
- electric vehicles to provide reserves
- prosumage of solar electricity
- residential heat
- power-to-X, hydrogen mobility

Electric vehicles in DIETER

28 driving profiles

- with different shares among overall electric vehicle fleet
- Twelve plug-in hybrids, 16 battery electric vehicles
- differing by battery energy and power capacity

Hourly time series

- Electricity demand for mobility
- Availability for charging

Research design

Greenfield setting (2050 perspective)

Data loosely calibrated to Germany

Inference: vary relevant parameters and constraints

- Minimum renewables share
 - → 70, 80, 90, 100%
- Electric vehicle fleet
 - \rightarrow 0 to 32 million
- Charging electricity
 - → No restriction, as system, 100% renewables

Scenarios

(i) Uncontrolled charging

Vehicles charge as soon as connected to the grid until battery full

(ii) Controlled charging G2V

Vehicles charging endogenously optimized concerning timing and level

(iii) Controlled charging with V2G

Vehicles can additionally discharge to the grid

(iv) Controlled charging with V2G and reserve provision

Vehicles can additionally provide balancing reserves

Results – preliminaries: absolute costs

Total sytem costs rise with number of electric vehicles

- lower growth for better system integration
- but appears close to linear

Results – preliminaries: flexibility

Competing flexibility options

70% renewables, 4 million vehicles	Li-ion GW	Li-ion GWh	PHS GW	PHS GWh
(i) Uncontrolled	9999	14002	4531	34119
(ii) Controlled G2V	5063	6674	3744	29672
(iii) Controlled V2G	3928	5159	1238	10187
(iv) Controlled V2G plus reserves	1536	2446	603	4880

4

Results – preliminaries: prices

Vehicle perspective

70% renewables, 4 million vehicles	Average charging price	Average discharging price
(i) Uncontrolled	95.3 Euro/MWh	
(ii) Controlled G2V	55.1 Euro/MWh	
(iii) Controlled V2G	69.9 Euro/MWh	143.5 Euro/MWh

Hypothesis 1 – electricity demand vs flexibility supply

→ Also for small fleets:

- no absolute cost advantage
- apparently linear cost increase

4

Hypothesis 2

■ 70% renewables № 80% renewables ■ 90% renewables ■ 95% renewables ■ 100% renewables

4

Hypothesis 2 – lower relative cost increase at more RES

■ 70% renewables 80% renewables ■ 90% renewables ■ 95% renewables ■ 100% renewables

→ Additional demand (that) and flexibility (when)

- Vehicles consume energy that is curtailed otherwise
- Use of energy when available, intertemporal arbitrage

Hypothesis 2 – lower relative cost increase at more RES

→ Additional demand (that)

lowers curtailment of variable renewables if charging controlled

Hypothesis 3 - flexibility benefit and fleet size

■ Benefit of controlled charging Senefit of vehicle-to-grid ■ Benefit of reserve provision

→ Simultaneity effects

- saturation: total value of flexibility decreases in fleet size
- but value of controlled G2V charging increases in fleet size

Thank you for listening

DIW Berlin — Deutsches Institut für Wirtschaftsforschung e.V. Mohrenstraße 58, 10117 Berlin www.diw.de

ContactAlexander Zerrahn azerrahn@diw.de