A Sector-coupling Spatial Optimization Model for the German Electricity Market

Bringing Gas and Heat Into the Equation

Jens Weibezahn & Alexander Weber

Technische Universität Berlin, Workgroup for Infrastructure Policy (WIP)

Extending ELMOD-DE by CHP and Natural Gas

ELMOD-DE (2016)

ELMOD-DE is an open source electricity market dispatch model for Germany, supplied with data for the year 2012.

New Developments (2017)

- Update of all data to the year 2015
- Inclusion of CHP power plants
- Coupling with the natural gas market

ELMOD-DE Electricity Market Model

Features

- cost minimizing linear (LP) model written in GAMS
- hourly resolution (8760 hours)
 possibility to calculate single weeks
- block sharp representation of power plant portfolio
- fixed imports and exports for neighboring countries

DC Load Flow

$$pf_{1,2} = G_l(V_1^2 - V_1V_2\cos(\theta_1 - \theta_2)) + \hat{b}_lV_1V_2\sin(\theta_1 - \theta_2) \tag{1}$$

$$\sin(\theta_1 - \theta_2) \approx \theta_1 - \theta_2 \tag{2a}$$

$$\cos(\theta_1 - \theta_2) \approx 1 \tag{2b}$$

$$V_1 \approx V_2 \approx 1$$
 (2c)

$$pf_{1,2} = \hat{b}_l(\theta_1 - \theta_2) \tag{3}$$

$$|pf_{lt}| \le \overline{pf_l}$$
 $\forall l, t$ (4a)

$$pf_{lt} = \sum_{n} \theta_{nt} h_{ln} \qquad \forall \quad l, t$$
 (4b)

$$ni_{nt} = \sum_{k} \theta_{kt} b_{nk}$$
 $\forall n, t$ (4c)

$$\theta_{\hat{\mathbf{n}}t} = 0 \qquad \forall \quad t \tag{4d}$$

Generation Cost Minimizing Objective Function

$$\min_{g^{\text{unit}}} c = \sum_{pt} g_{pt}^{\text{unit}} \hat{c}_{pt}^{\text{unit}} \tag{5}$$

Nodal Energy Balance

$$\sum_{p \in P_n} g_{pt}^{\text{unit}} + \sum_{i} r_{nit}^{\text{tech}} + \sum_{s \in S_n} \overrightarrow{ps}_{st} + ni_{nt} = q_{nt} + \sum_{s \in S_n} \overleftarrow{ps}_{st} \qquad \forall \quad n, t$$
 (6)

Generation Constraints

$$g_{pt}^{\mathrm{unit}} \leq \overline{g}_{p}^{\mathrm{unit}} a v_{pt}^{\mathrm{unit}} \qquad \forall p, t$$
 (7a)

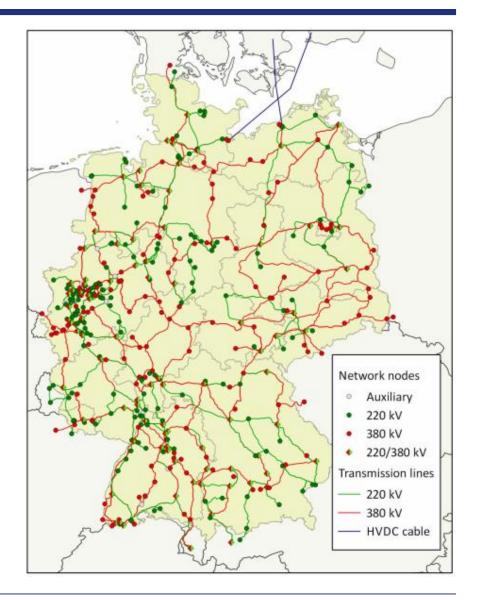
$$r_{nit}^{\mathrm{tech}} \leq \overline{r}_{nit}^{\mathrm{tech}} a v_{nit}^{\mathrm{tech}} \qquad \forall \quad n, i, t$$
 (7b)

PSP Storage Constraints

$$\overrightarrow{ps}_{st} + \overleftarrow{ps}_{st} \leq \overline{ps}_{s}$$
 $\forall s,t$ (8a)

$$ls_{st} \le \overline{ls}_s$$
 $\forall s, t$ (8b)

$$ls_{st} = 0.75 \overleftarrow{ps}_{st} - \overrightarrow{ps}_{st} + ls_{s(t-1)} \qquad \forall \quad s, t$$
 (8c)

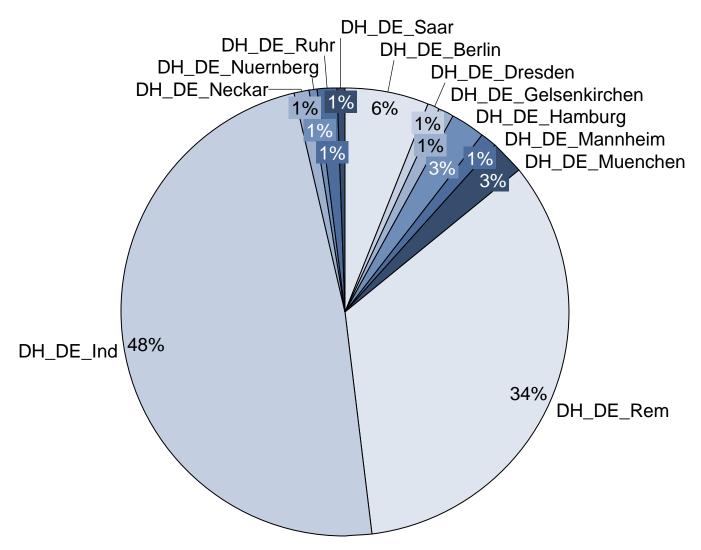


Input Data ELMOD-DE

Update to 2015 data

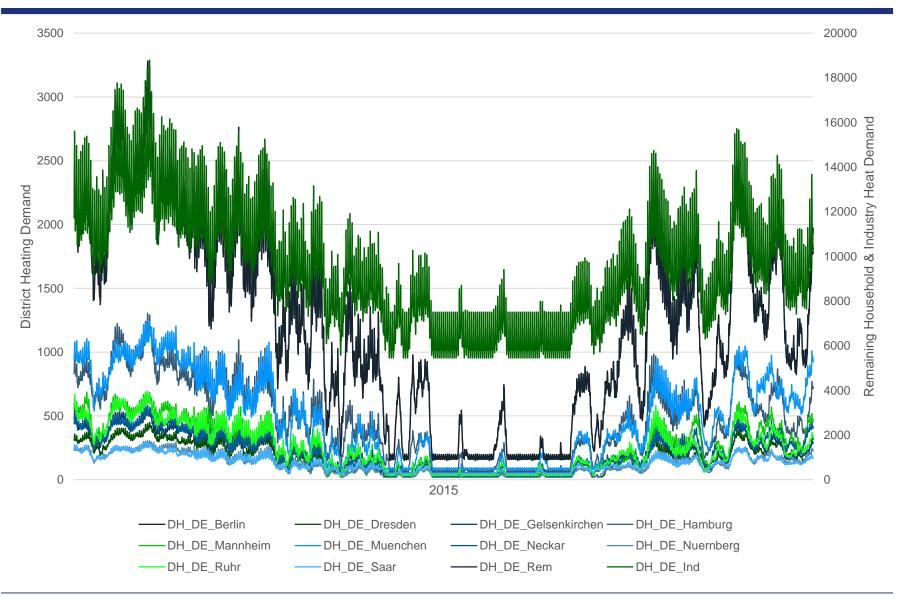
Type	Data description	$ m References^{10}$
Network	- Topology according to network plans	VDE & TSOs
	- Geo-referenced data for nodes and lines	OpenStreetMap (2013)
	- Technical parameters overhead power lines	Kießling et al. (2001)
Demand	- Load level of Germany (hourly)	ENTSO-E (2013)
	- Adjustment to statistic of annual demand	BDEW (2013)
	- Spatial allocation to network nodes	Eurostat (EC, 2013)
	with statistic on population and GDP	on NUTS 3 level
Generation	- Power plant list for the German system	BNetzA (2013)
	- Renewable data of the EEG support scheme	TSOs
	- Price data for fossil fuels (monthly)	Kohlenwirtschaft e.V.
	- Price data for CO ₂ certificates (daily)	EEX (2013)
	- Coal transport cost (dena zones)	Frontier & Consentec
Trade	- Physical cross-border flows (hourly)	TSOs and ENTSO-E
Availability	- Regional time series for wind and PV (hourly)	TSOs

Table 2: Overview on institutions for data sources

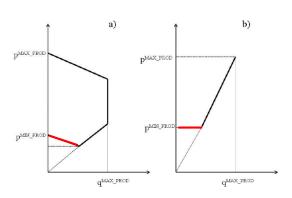


CHP: pooling for district heating

- Idea: modeling pools of CHP plants in district heating networks with common minimum heat production constraints for household demands
 - modeling must-run conditions for CHP plants decreases their production flexibility (more realistic – was not yet included in the original ELMOD-DE)
 - (incomplete) inclusion of pools for district heating increases the flexibility
 - problem: (open) data basis the ten biggest district heating systems only account for about 35% of household heat demand
 - is the effort and increased complexity of the model worth the outcome?


Data Input: Heat Demand Time Series

Network	Q [TWh]
DH_DE_Berlin	10.36
DH_DE_Dresden	1.47
DH_DE_Gelsenkirchen	1.83
DH_DE_Hamburg	4.09
DH_DE_Mannheim	2.19
DH_DE_Muenchen	4.25
DH_DE_Rem	57.90
DH_DE_Ind	82.10
DH_DE_Neckar	1.92
DH_DE_Nuernberg	1.03
DH_DE_Ruhr	2.11
DH_DE_Saar	1.10


Data Input: Heat Demand Time Series

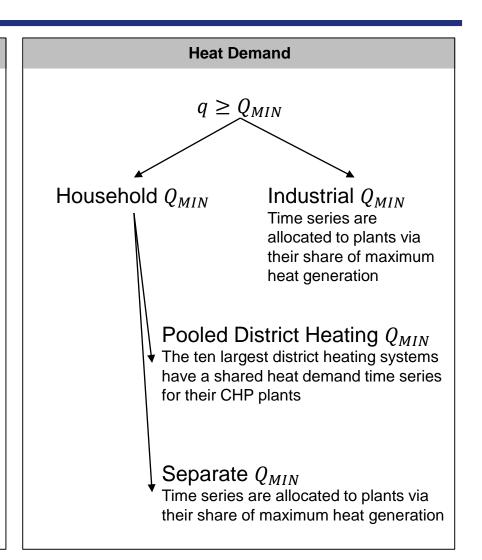
CHP and District Heating

Extraction-condensing and backpressure turbines

Simplified PQ-chart for a) extraction-condensing turbines and b) back pressure turbines (Source: WILMAR)

$$P \le p_{max} - \gamma \times Q$$
 $P \le p_{max}$

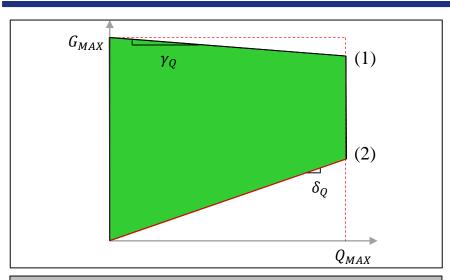
$$P \leq p_{max}$$


$$P \ge p_{min} - \gamma \times Q$$
 $P \ge p_{min}$

$$P \ge p_{min}$$

$$P \ge \delta \times Q$$

$$P = \delta \times Q$$


$$Q \leq q_{max}$$

All parameters and variables dependent on time and production unit/district heating pool

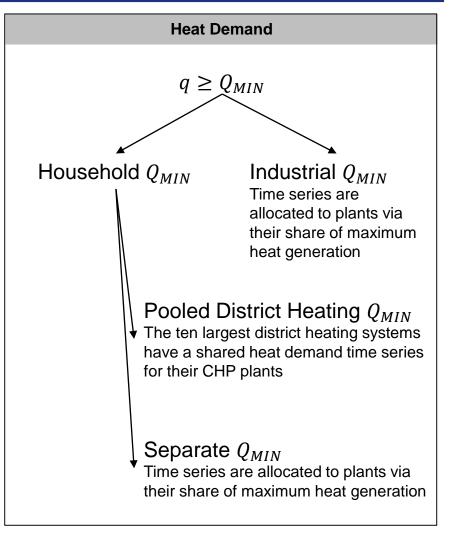
CHP and District Heating

Extraction-condensing turbines (EXT)

$$g \le G_{MAX} - \gamma_Q \times q \qquad (1)$$

$$g \ge \delta_O \times q$$
 (2)

$$q \leq Q_{MAX}$$


Backpressure turbines (BKP)

$$g \leq G_{MAX}$$

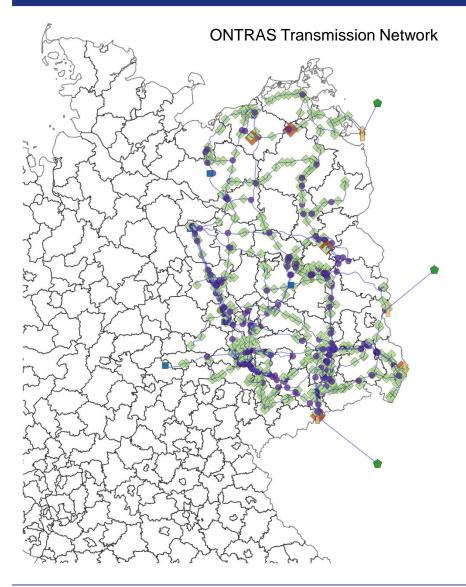
$$g = \delta_Q \times q$$

(2)

$$q \leq Q_{MAX}$$


All parameters and variables dependent on time and production unit/district heating pool

ELMOD-DE-HEAT: Preliminary Results & Validation



ELMOD-DE-HEAT: Preliminary Results & Validation

Natural Gas Transmission Grid

- Relevance: the natural gas network can be used as a short and long term storage facility – there might be some limitations though...
- Challenge: find a linearized representation of the gas flows, pressures and pipe contents

Natural Gas Transmission Model

Objective: linearized min costs of operating the network (i.e. energy usage of compressors) - to be included in the overall objective

$$N' = \frac{QP_i}{\left(\frac{2}{3}P_i + \frac{1}{3}P_u\right)^2}P'_u - \frac{QP_u}{\left(\frac{2}{3}P_i + \frac{1}{3}P_u\right)^2}P'_i + \frac{P_u - P_i}{\left(\frac{2}{3}P_i + \frac{1}{3}P_u\right)^2}Q'_i$$

- Constraints:
 - Supply capacity flow out of supply nodes cannot exceed capacity
 - Demand flow into demand nodes cannot exceed demand

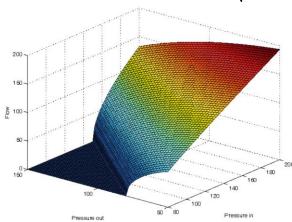
$$\sum_{j \in O(n)} f_{gj} \le G_g \sum_{j \in I(m)} f_{jm} \le D_m$$

 Mass balance (Kirchoff's first law) – flow into transportation node has to equal flow out of transportation node

$$\sum_{i \in I(j)} f_{ij} = \sum_{n \in O(j)} f_{jn}$$

Pressure constraint – Weymouth equation for long pipelines with high pressure

$$W_{ij}(p_{ij}^{in},p_{ij}^{out}) = K_{ij}^{W}\sqrt{p_{ij}^{in^2}-p_{ij}^{out^2}}$$
 K_{ij}^{W} is the Weymouth constant for the pipeline (i.e. length,


diameter, ...)

Natural Gas Transmission Model

Constraints:

 Pressure constraint – linearization of the Weymouth equation with L linear constraints around a set ouf points (PI,PO)

$$f_{ij} \le K_{ij}^{W} \frac{PI_{l}}{\sqrt{PI_{l}^{2} - PO_{l}^{2}}} p_{ij}^{in} - K_{ij}^{W} \frac{PO_{l}}{\sqrt{PI_{l}^{2} - PO_{l}^{2}}} p_{ij}^{out}$$

Fig. 3. A three-dimensional illustration of how the Weymouth relates pressure at the inlet and outlet points to the capacity in the pipeline.

Source: Tomasgard, A. et. al. (2007): "Optimization Models for the Natural Gas Value Chain", pp. 521-558 in: Geometric Modelling, Numerical Simulation, and Optimization, Springer, Berlin, http://link.springer.com/10.1007/978-3-540-68783-2_16

- Compression – The compression factor $\Gamma(f_n) = \left(\frac{W^{max}\eta(K_a-1)}{100K_af_n}+1\right)^{\frac{K_a}{K_a-1}}$ dependent on the flow can be simplified to a constant – $\Gamma_n p_{jn}^{out} \geq p_{ni}^{in}$

Conclusion and Outlook

- ELMOD-DE has been extended by a linear representation for CHP plants and a new output variable for natural gas calculations.
- The results improved, having a better match in the backtesting with actual electricity production.
- The model code in GAMS and the used data set for the year 2015 will be published open source by the end of the year.
- Next step: implementation of the gas transmission network model.

Research funded through grant "LKD-EU", FKZ 03ET4028A, German Federal Ministry for Economic Affairs and Energy

Jens Weibezahn

Technische Universität Berlin Workgroup for Infrastructure Policy (WIP) jens.weibezahn@tu-berlin.de