

Atle Oglend, Petter Osmundsen, Tore Selland Kleppe

University of Stavanger uis.no

9/26/2017

Introduction - LNG trade

- LNG trade Small, but important for the value of natural gas resources
- Connects regional supplies to global markets
- A common global natural gas price possible?

LNG trade and Market Integration

- Literature show some (but weak) evidence for LNG trade facilitating improved regional natural gas market integration (Neumann, 2012; Li et al., 2014; Dehnavi and Yegorov, 2012; Oglend et al., 2016)
- Barriers to LNG facilitated Market Integration
 - Regulatory restrictions, inflexible and slow regulatory process, domestic security concerns
 - Differences in how gas is transacted (Spot vs forward contracting based on indexed pricing).
 - Specific, lumpy and time-consuming investments in the LNG supply chain (liquefaction plants, LNG carriers, regasification plants). Gives inelastic supply of transportation services in the short run and cyclical expansion/contraction of capacity
 - Unsynchronized investments in the supply chain due to decentralized decisions
 - Time commitments to LNG shipments due to transportation over long distances

The cost of LNG trade - Freight rates

- Investment expansion cycle has been completed
- Freight markets are highly integrated across exporter and importer regions

The cost of LNG trade - Freight rates

- The cyclicality and persistence of LNG freight rates reflects the technological demanding nature of LNG trade
 - Capacity is fixed in the short-run and so prices are sensitivey to demand changes
 - Coordinating capacity adjustments in the supply-chain is complicated
 - Investments are lumpy
- Not accounting for the endogeneity of trade costs will bias measures of LNG market efficiency and integration downwards (Dehnavi and Yegorov, 2012; Oglend et al., 2016)
 - Large regional price spreads does not translate to arbitrage opportunities

Freight rates and Regional price spreads

Time Commitments in Trade

- LNG trade occurs over long distances
 - Main LNG exporting countries are Australia, Algeria, Egypt, Malaysia, Nigeria, Qatar and Trinidad
 - Main destination markets are Asia (Japan, South Korea), Europe (Belgium, Spain and the UK), India, and to a less degree now the US.
- Irreversible time commitments to trade imposes an additional barrier to market integration
 - Novel barrier to trade not analysed previously in the literature

Time Commitments in Trade

- Irreversible time commitment generates an opportunity cost of trade that augments the direct accounting transportation cost
- Cost of LNG trade per MMBtu:
 - C= liq_cost + regas_cost + freight_rate*distance + $\omega(S)$
- S Price spread i.e. terms of trade condition
- $\omega(S)$ opportunity cost due of trade commitment
- ω(S) typically convex in S

Measuring Market Integration, Example

Model for Price Spread Dynamics:

$$\Delta S_{t+1} = \alpha \left(S_t - \hat{C}(S_t) \right) + \varepsilon_{t+1},$$

Cost specifications:

1.
$$\hat{C}_1(S_t) = C$$

2.
$$\hat{C}_2(S_t) = C + distance * freight_rate_t$$
,

3.
$$\hat{C}_3(S_t) = C + distance * freight_rate_t + \omega(S_t)$$
,

• Measure of strength of market integration: $|\alpha|$

- Opportunity cost $\omega(S)$ is solved for numerically as part of the exporters optimal trade commitment decision
 - Assumes annual cost of capital of 15%
 - Cost of trade as in cost specification 3.
 - Assume time commitments of two months for trade decisions
 - Dynamics of spread as in above model for price spread dynamics
- This allows estimation of the degree of price convergence under all three hypothetical cost specifications
 - Important: This does not identify $\omega(S)$, only a function consistent with $\omega(S)$. We therefore refer to the esimated $\omega(S)$ as the implied opportunity cost of trade.

Application: EU/US spread (2006-March 2017)

- Cost spec. 1: $\alpha_1 = -0.072$ (S.E. = 0.030)
- Cost spec. 2, with freight cost: $\alpha_2 = -0.094$ (S.E. = 0.029)
- Cost spec. 3, with freight cost and implied opportunity cost of trade: $\alpha_3 = -0.135$ (S.E. = 0.045)
- Accounting for freight cost variation and additional implied opportunity cost of trade improves the measured price convergence
 - Suggests cost convexities are relevant barriers facing LNG trade in facilitating market integration

- LNG trade is technologically demanding
 - Remains an important barrier for LNG trade in ensuring regional market integration
 - Is partly reflected in the cyclicality and persistence of LNG freight rates
- Irreversible time commitments to trade adds an opportunity cost to the direct cost of trade
 - The asset is locked in during transit
 - Raises an additional barrier to LNG trade not previously discussed in the literature
- Cost convexities and endogeneity are empirically important to explain lack of regional price convergence

