

Chair of Energy Economics, Prof. Dr. Möst

The role of grids and storage for renewable integration

Dual Plenary II: New designs in electricity markets

IAEE Wien - "HEADING TOWARDS SUSTAINABLE ENERGY SYSTEMS: EVOLUTION OR REVOLUTION?"
04.09.2017

Prof. Dr. Dominik Möst, TU Dresden

Increasing amount of intermittent renewables

Electricity production in Europe

- Installed capacity of renewable energy sources (RES) will increase in Europe (and worldwide)
- Flexibility need will grow
- Several options can provide flexibility:

Agenda

- 1 Graphical analysis: optimal capacity and long-term merit order effect
- 2 Model based analysis: trade-off between grid and storage capacities
- 3 Market zones, grid extension and the impact on congestion management
- 4 Some final thoughts

Hours with surplus renewable feed-in will increase

The integration of renewable energy sources (RES) significantly influences the residual load:

- Number of hours with negative residual load rises
- Surplus of RES feed-in increase
- Level of maximal negative residual load grows

What to do with the surplus?

Store, export or curtail?

Simple (graphical) capacity model

Illustrative model

 Simplified visualisation of necessary capacities in steadystate

Optimal capacity in long-term equilibrium

- Assumption:
 - Immediate adaption to optimal power capacities
 - No congestions in the considered system
 -

System perspective Adaptation of "optimal" capacity?

Necessary generation portfolio – what will change?

- Reduction of base-load and mid-load
- Increase of peak-load
- Increase of storage power plants

What to do with the surplus?

- Store
 - Decreases variable production costs (as surplus will probably be "cheap")
- Export
- Demand Side Management (Smart Market)
- Curtail surplus

Schematic merit-order effect and impact on price distribution

- Self-marginalisation with high shares of renewables (e.g. 100 GW PV)
- Speed of change/RES extension and expectations for subsidies prevent a market equilibrium!
- => Further incentive schemes for renewables are necessary!

Impact on the price duration curve

The merit-order effect of renewables (long-term effect)

a regulated capacity "market" (resulting in a cut-off of extreme price peaks)?

Agenda

- 1 Graphical analysis: optimal capacity and long-term merit order effect
- 2 Model based analysis: trade-off between grid and storage capacities
- 3 Market zones, grid extension and the impact on congestion management
- 4 Some final thoughts

Hours with surplus renewable feed-in will increase

The integration of renewable energy sources (RES) significantly influences the residual load:

- Number of hours with negative residual load rises
- Surplus of RES feed-in increase
- Level of maximal negative residual load grows

What to do with the surplus?

Store, export or curtail?

Electricity system model **ELTRAMOD** to analyse the interdependence between storage need, grid extension and renewable curtailment

Model purpose

- Fundamental system model / bottom-up model
- Integration of renewable energy sources (RES) in the European energy system
- Flow calculation based on Net Transfer Capacity (NTC
- Trade-off between grid and storage extensions
- Combined investment and production planning

Main characteristics

- Temporal resolution of 8760 hours
- Calculation of the cost-minimal generation dispatch and investments in additional transmission lines and storage facilities
- Country specific times series of wind and PV feed- in

Grid and Storage Extensions in Europe till 2050

An application of ELTRAMOD for the Energy System Analysis Agency (www.esa2.eu)

- RES feed-in obligation: every available unit of RES has to be integrated
- RES Curtailment: the surplus of RES supply can be curtailed
- => RES priority feed-in significantly influence the need of further storages and transmission capacities.

Removing the feed-in obligation and its impact on grid and storage extension

	feed-in obligation	curtailment
Non integrated RES surplus supply <u>without</u> grid and storage extensions	10.2%	11.9%
Non integrated RES surplus supply <u>with</u> grid and storage extensions	0.9%	3.7%
Additional transmission capacities up to 2050 (NTC)	252.2 GW	143 GW
Additional storage capacities up to 2050	35.7 GW	7.9 GW

- Mandatory feed-in versus curtailment has a low impact on integrated RES generation
 - => However: significant difference for grid and storage extensions settings

Central statement:

- From the economic point of view it is not optimal to integrate all available RES generation
- RES should be demanded for system stability and further market integration.
- => Mid term perspective: grid extension and stronger market integration, then storage...

Impact of RES-E share and CO₂-prices on the need of storage capacities in the system

Share of RES-E generation

- Mid-term (< 40%): Nearly no change in storage demand
- Long-term (>60%):
 Increase of storage demand, but still moderate
- Long-long-term (>85-90%)
 Significant increase of storage demand!

Cost of CO₂

- Low CO₂-price (<15 €/t): Good for storage power plant (cheap base-load)
- High CO₂-prices (>40 €/t): Amount of storage at 50% RES-E at about todays storage level
- => Storage need is quite sensitive to RES-E share and CO₂ costs, but unfortunately in a contradicting way!

Economic value of storage

(simplified illustration)

Large differences in profitability of large- and small-scale storage due to regulation

 Diminishing spreads compromise profitability of storage and do not justify new investment

Large-scale storage investment hardly profitable due to small spreads

Domestic PV storage profitable dependent on the regulatory environment

=> Decentral storage options have about 5 times higher incentives in GE but strongly dependent on regulation (grid fees, feed-in tariff, market rules, ...) decentral option: + higher willingness to pay will lead to market uptake ...

Maximise "self-consumption" and autarky from April to October...

Learning curve Lithium-ion batteries

Cycle stability is (still) of crucial importance!

Assumption:

- 1000 2500 cycles => e.g. 10 a * 250
- 150 €/kWh (before 2020)

=> 6 - 15 Ct/kWh (+ battery management and installation)

+ approx. 8 Ct/kW PV generation << 30 Ct/kWh el. supply

Source: B. Nykvist, M. Nilsson: Rapidly Falling costs of battery packs for electric vehicles, Nature Climate Change

=> Mid-term perspective: decentralised storage systems will be economically very attractive under current tariff structure

Agenda

- 1 Graphical analysis: optimal capacity and long-term merit order effect
- 2 Model based analysis: trade-off between grid and storage capacities
- 3 Market zones, grid extension and the impact on congestion management
- 4 Some final thoughts

Trade-off between grid extension, congestion management and market splitting

Own calculations show that NEP2025 seems to be a reasonable degree of grid extension

interested in details? => see presentation of Hinz, Wednesday in session 7B!

Additional transport requirement necessitates grid extensions and leads to cost increase

Source: Consentec (2016), Netzstresstest

Distribution of RES causes add. transport requirement from North to South

Source: NEP2030

Grid extension requirement quantified and concretized by **TSOs**

Source: Own calculations based on NEP2024

100% increase in transmission grid cost within ten years

Omission of necessary investments causes high congestion management cost

- Strong increase in redispatch and curtailment cost due to
 - Horizontal congestions in the transmission grid (North → South)
 - Vertical congestions in the distribution grid

- 5 years delay in grid extension causes additional cost of 1.8 bn. EUR
- Respective invest delta: 10 bn. EUR (700 mio. EUR annual cost)

Source: BNetzA Monitoringreports, own calculations based on ELMOD grid model

Long-term: NEP 2025 is not the end, but the beginning of further infrastructure investments

Assumption: medium utilisation of 40% of each line

=> But grid extension strongly dependent on assumptions concerning renewable extension

Two price zones in Germany?

Model-based analysis of long-term impact

Analysis with a fundamental model within Avers-project

Development of price difference

=> Prices converge due to optimal planning

Development of level of adequacy

=> Optimal capacity installations increase regional level of adequacy

Explanation

DEN ... Germany North, DES ... Germany South SPLIT-DEN/DES ... two market zones DEN/DES

Source: Avers-project:

Hladik, D., Fraunholz, C., Kunze, R.: Zwei Preiszonen für Deutschland, Optimierung in der Energiewirtschaft

Agenda

- 1 Graphical analysis: optimal capacity and long-term merit order effect
- 2 Model based analysis: trade-off between grid and storage capacities
- 3 Market zones, grid extension and the impact on congestion management
- 4 Some final thoughts

Some final thoughts and conclusions

Are there any principles that exist for a long time and do we ignore them because we are used to them?

- Electricity prices
 - Markets: Supply and demand are well functioning ("technically")
 - But: speed of change and expectations for subsidies prevent a market equilibrium
- Complexity of political measures
 - One policy mechanism (market engagement) pulls next to itself
 - Objectives are often conflicting (fragmentary, incomprehensible) and system perspective is missing
- Market created with liberalization and systematically hollowed out ...
 - When do grid operators build power plants?
 - Tendency that state defines "right" technologies
- ⇒ Renewable integration necessitates broad portfolio of technologies and correct price signals!
- ⇒ Power grids play an important role for renewable integration!
- ⇒ Interdependencies in the system have to be considered!
- => How can Europe benefit (more) from the "Energiewende"?

Fakultät für Wirtschaftswissenschaften, Lehrstuhl für Energiewirtschaft, Prof. Dr. Möst

»Wissen schafft Brücken.«

Grid extension is necessary ...

- "Early" Coal-phase-out until 2030 is possible, but:
 - not with the expected grid extensions of NEP!
 - => New/additional power lines are necessary!
 - Additional: back-up capacities at some locations necessary!
 - => Current electricity prices: Who are the investors (without subsidies)?

Necessary investments in new lines (in km) for different lignite-phase-out scenarios

REF ... no lignite-phase-out **LPO-DE** ... lign.-phase-out GE **LPO-East** ... lign.-phase out in East-GE **LPO-West** ... in West-GE

LPO-Gas ... substitution of lignite by gas power plants

EE²