

Favourable policy frameworks to ensure the future of district heating in Eastern European Countries – The case of Brasov

Richard Büchele Sept 5th 2017

15th IAEE European Conference 2017
'HEADING TOWARDS SUSTAINABLE ENERGY SYSTEMS: EVOLUTION OR REVOLUTION?'

3rd to 6th September 2017, Hofburg Congress Center, Vienna, Austria

Contents

- Introduction
- Brasov case study
- Method
 - Modelling Framework
 - Policy Assessment
- Results
- Conclusion
- Discussion

Project: progRESsHEAT (2015-2017)

Aim: Assisting local, regional, national and EU political leaders in developing policies and strategies to ensure a strong and fast deployment of renewable and efficient heating and cooling systems

6 Local case studies – Brasov

 Old district heating network, overdimensioned high network losses, low security of supply, distrust, disconnection

 Various other cities in Eastern Europe with similar conditions

www.progressheat.eu

Brasov overview

Municipal area: 158 km²

Inhabitants: 274 500 (2014)

Altitude: 625 m

Building stock:

~17 000 buildings ~9.8 Mio m² floor area

Demand for SH&DHW:

~1 400 GWh

- District Heating (DH):
 - Four sites (DH areas)
 - 11 (new) CHP gas engines (43 MW_el / 38 MW_th)
 + gas boiler (107 MW_th)
 - Supplied demand: ~67 GWh
 - Network losses: ~58%!!
 - → Distrust / Disconnection/ old & overdimensioned network

Modelling Framework

Idea: Find cost optimal combination between

Heat savings

- Minimization of investments into building envelope (windows, roof, basement, walls) to achieve 8 different levels of heat savings
- Heat saving potential and levelized costs (EUR/kWh saved) derived for 30 different building classes (10 categories + 3 construction periods) in Invert/EE-Lab model¹⁾
 - → Heat saving level chosen that is most economic in combination with supply option
 - → Iterations to calculate new levelized costs of heat after renovation

Heat supply options

- Individual vs.
 - Levelized costs of heat for 30 different building classes and 5 technologies
- District heating
 - GIS based analysis: Municipality divided into four different types of areas
 - District heating areas
 - Next-to-DH areas
 - Individual areas
 - Scattered Buildings/ Individual buildings
 - Dispatch optimisation model in energyPRO²⁾ for DH supply

Policy Assessment

2 Scenarios for district heating system

- Reference Scenario 2030
 - Current supply situation
 - Heat from external producer with Natural gas CHP engines from
 - 50% of old parts of network renewed until 2030 (~35km ~28 Mio EUR)
 → network losses drop to 12%
- Alternative Scenario 2030
 - Network splitting to cut off least efficient parts / bring supply closer to demand
 - Still 50% of old parts of network renewed until 2030 (~35km ~28 Mio EUR)
 → network losses drop to 12%
 - Investments into additional renewable technologies at the different sites
 - 0.5 MW Biomass plant
 - 3 MW_{el} heat pump
 - 2000 m² solar thermal collectors
 - + local natural gas heat only boiler

Assessed Policies

- Long term loans for network investments (1.5%, 40y) (public service)
- Free (supported) connection to DH grid
- CO₂ tax on individual fossil fuels (2 tax levels)
- 45% Investment subsidy for RES in district heating
- Zoning (heat planning) with prohibition of gas in designated district heating area
- Policy package Long term loans
 - + moderate CO₂ tax (35€/t)
 - + RES subsidy (45%)

Indicators

- Total useful energy demand for SH&DHW
- Total CO₂ emissions for SH&DHW
- Share of RES
- Share of district heating
- Total costs of heat supply and heat savings
- Average levelized cost of heat

Energy demand, RES- and district heating- share

Total CO₂ emissions and total costs for heat

CO₂ Emissions

- Decrease of 40-44% compared to 2014
 - Heat savings and switch to individual heat pump and biomass boiler in SFH
- Higher decrease with DH
 - But limited by low RES capacities (fossil HOB)
 → more RES needed for additional consumers

Total costs for heat (including cost for savings)

- General increase due to higher energy prices
- Low differences in costs but
 Public < Alternative < Reference

Current 2014 Ref Scen 2030 Alt Scen 2030 Ref 2030 publ Alt 2030 publ TU Wien – Energy Economics Group

Recommendations

- High investments into (old) network infrastructure needed
 - Often not viable under private economic conditions
 - → Long term loans / public service / ownership structure (cooperatives...)
- High connection rate in the district heating area needed
 - to scale down fixed costs for network
 - → Planning/ Zoning/ Forced connection? /Forbid fossil alternatives?
 - → modern, reliable and comfortable DH system
 - → Information and image campaigns on benefits of DH
- Currently low taxation on fossil fuels
 - No internalisation of CO₂ costs
 - Difficult for district heating and low carbon technologies to compete with natural gas
 - → CO₂ price of ~130 €/t (26 €/MWh) needed
 - Use tax to support RES technologies
- Combination of policies
 - Long term loans + RES investment subsidies + moderate CO₂ tax of 35€/t

Thank you for your attention!

Richard Büchele

buechele@eeg.tuwien.ac.at

