

Financial Feasibility of Storage Technologies in Electricity Systems Empirical Evidence from Chile

Héctor Osorio, Carlos Silva, Shahriyar Nasirov, and Claudio A. Agostini

Universidad Adolfo Ibañez

Vienna, Austria, 03-06 September 2017 Session 6G Wednesday, September 06, 11:00 am – 12:30 am

Presentation overview

- Introduction
- Methodology
- Results
- Conclusion

Chilean electric market

Evolution of Chilean Energy Matrix

Source: Solar Energy Research Center. 2016

Renewables and it challenges

- •RPS scheme (Renewable Portfolio Standards) 20% renewable energy target by 2025¹
- Favorable solar radiation

Tecnología	Operación (1) [MW]	Construcción [MW]	RCA Aprobada (2) [MW]	En Calificación [MW]
Biomasa (3)	463	0	469	79
Eólica	1.305	196	8.964	2.436
Geotermia	24	0	120	50
Mini Hidro (4)	450	47	805	114
Solar - PV	1.748	504	14.871	7.176
Solar - CSP	0	110	2.348	300
Total	3.990	85 <i>7</i>	27.577	10.155

Source: Generadoras Chile. 2017

Challenges

- Reliability of supply
- Variability of supply
- Generation disconnected from demand
- Oversized transmission systems
- Frequency
- Voltage

Energy storage systems in Chile

- First energy storage system installed in 2009 (12 MW-3MWh Li-ion batteries)
- Second energy storage system installed in 2011 (20 MW-5MWh Li-ion batteries)
- Future projects
 - Espejo de Tarapacá (300 MW hydro pump storage system)
 - Cerro Dominador (110 MW CSP with 17.5 hours of energy storage)

Are Energy Storage Systems economically feasible in Chile?

Methodology

Annual benefits vs. costs

- Price arbitrage
- Diminishment in transmission losses
- Defer of transmission investment

Annual benefits

- Different spot price for each hour
- •Less transmission losses

Annual costs

- •Annuity of investment²
- •0&M costs

Methodology

Price arbitrage

$$Max \sum_{t=1}^{8760} \pi(t) [P_c(t) - P_d(t)] \Delta t$$

Diminishment in transmission losses

$$Min \sum_{n=1}^{8760} kP^2$$

$$\sum_{t=1}^{8760} \pi(t) \left[Loss_{without \, storage}(t) - Loss_{with \, storage}(t) \right] \Delta t + \sum_{t=1}^{8760} \pi(t) \left[P_c(t) - P_d(t) \right] \Delta t$$

Methodology

Defer of transmission investment

Solar Jama 50% capacity increase

Results: Price arbitrage

Source: CDEC - SING 2016

Results: Diminishment in transmission losses

Source: Obtained from simulations

Source: CDEC - SING 2016

Source: CDEC - SING 2016

Results: Defer of transmission investment

250

(MM) reword 1200

100

Hours Source: CDEC - SING 2016

11 13 15 17 19 21 23

■No storage

-Storage

Source: CDEC – SING 2016

Conclusion

- Energy storage is needed to connect supply and demand of renewables
- •Energy storage is technically capable, but expensive
- Price arbitrage seems to be the best option
- Government subsidies needed
- •Not recommended until price drops to around a third or the obtainable benefits increase