

GERMANY'S "YES" TO RENEWABLES: JUST A QUESTION OF REACHING CO2-REDUCTION TARGETS?

Stefan Vögele¹, Dirk Rübbelke², Philip Mayer², Wilhelm Kuckshinrichs¹

- ¹ Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research Systems Analysis and Technology Evaluation (IEK-STE), Germany
- ² TU Bergakademie Freiberg, Germany

Outline

- 1. Motivation/Objective
- 2. Method
- 3. Results
- 4. Conclusions

1. Motivation/Objective

Germany: Quantitative target of the energy transition and status quo

	2015	2020	2030	2040	2050
Greenhouse gas emissions					
Greenhouse gas emissions (compared with 1990)	-27%	at least -40%	at least -55%	at least -70%	-80% to -95%

Source: BMWi (2015)

→ Analysis of pros and cons to support decisions to go for renewables

1. Motivation/Objective

- Pros and cons of renewables → focusing on sustainability indicators?
- Renewables as part of a energy/electricity system

 assessment of complex systems with different players
- Overall assessment? Cost-Benefit Analysis?

Objective

Overall assessment of intensive use of renewables in the German electricity system by comparing different scenarios

Steps

- Selection of indicators
- Specification of values for the indicators by taking the entire system into consideration
- Overall assessment

2. Method: Selection of Indicators

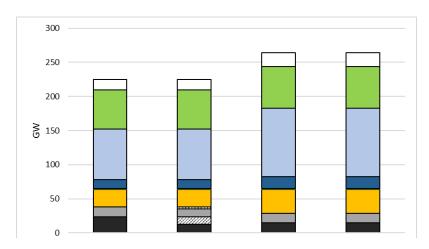
Economy	Ecology	Society
Net present value of the elec. system	direct CO ₂	PeceptTrust
Average levelized cost of electricity	SO ₂	PeceptEconomics
Wholesale prices	NOx	PeceptEnvironment
Annual producer surplus	Cumulated energy demand	PeceptSocial & Ethics
Consumer surplus	Coal demand	PeceptTechnological- feasibility
Expenditure on import of fuels	Global warming Potential	PeceptHealth
Sensitivity to changes in fuel prices	Eutrophication Potential	PeceptNIMBY
Sensitivity to changes in CO ₂ certificates prices	Acidification Potential	Impact on energy system
		Uncertainties the impacts are linked with

2. Method: Measurement of the Indicators

Steps:

- defining system boundaries (incl. scenario specification)
- assessment of the values for each indicator on technology level
- adjustment of the values by using a dispatch model for the European electric market (installed capacity/electricity production as weighting factors)

2. Method: Multi-Criteria Assessment

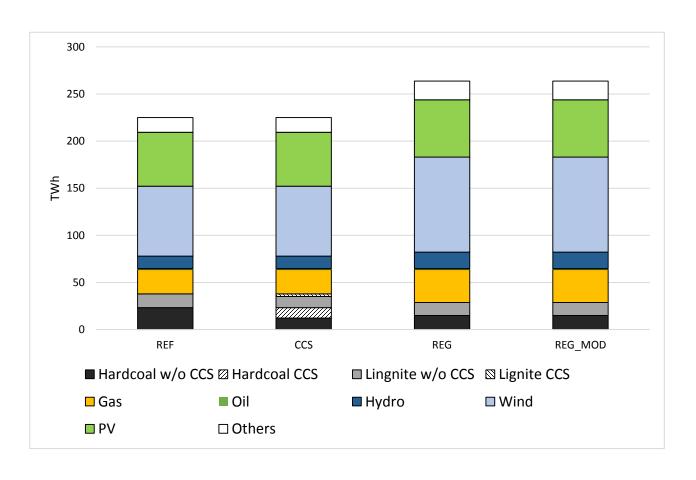

- normalization of results: enables a methodologically reliable comparison of indicators with different units
- weighting of indicators: defines the relative importance of indicators based on a normative foundation

Indicator weights in categories	Number of indicators	Variant 1: Equal weight	Variant 2: Econ. only	Variant 3: Ecol. only	Variant 4: Soc. only	
Economy	8	1/25	1/8	0	0	
Environment	8	1/25	0	1/8	0	
Social	9	1/25	0	0	1/9	
Total	25	1	1	1	1	

aggregation: final assessment by aggregation to a composite indicator

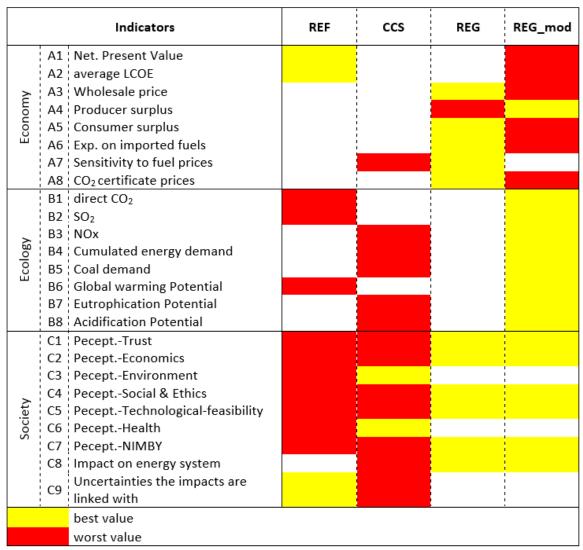
2. Method: Scenario Specification

				REF	ccs	REG	mod
Fuel c	osts						
-	d coal		Euro/GJ	3.48			2.21
Lignite		Euro/GJ	0.44			0.44	
Natural gas		Euro/GJ	10.28			7.91	
Oil		Euro/GJ	23.2			16.73	
CO ₂ prices		€/ton	31			93	
Techr	ology sp	ecific cost					
Coal-fired Capital cost O&M (w/o fuel cost)		Euro/kW	1500-1700				
		∩&M (w/o fuel cost)	Euro/MWh				
1 1 1	Capital cost	Euro/kW	2500-2700				
Biomass	Efficiency	0&M (w/o fuel cost)	Euro/MWh	6			
		Capital cost	Euro/kW		7:	50	
		0&M (w/o fuel cost)	Euro/MWh		;	3	
		Capital cost	Euro/kW		25	500	
		0&M (w/o fuel cost)	Euro/MWh		•	7	
		Capital cost	Euro/kW		14	100	
		0&M (w/o fuel cost)	Euro/MWh	0			
		pased on ENTSO-E (2016)					

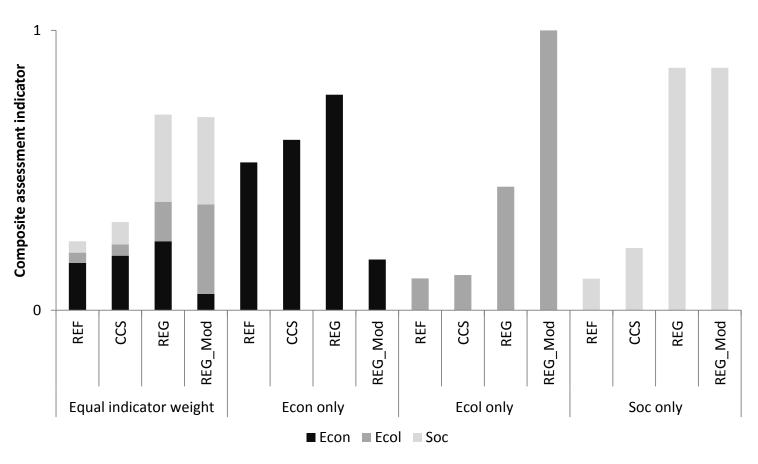

Technology Perception Category	Coal	ccs	Natural Gas	Nuclear	Wind ON	Wind OFF	PV	Solar Heat	Biomass	Efficiency
1.Trust										
2. National Economics										
3. Individual Economics										
4. Environment										
5. Social & Ethics										
6. Techn. Feasibility										
7. Health										
8. NIMBY										
9.Potential of Desaster										
Legend: -1 = contra 0 = ambivalent 1 = pro n/a = no answer										

Source: Own compilation based on (Scheer et al. 2014)

- Data from Life Cycle Analysis
- Data from World Energy Council ("World Energy Issues Monitor")


3. Results: Electricity Production

Source: Own calcculation



3. Results: Performance Matrix

3. Results: Overall Assessment

Source: Own calcculation

4. Conclusions

- Extension of indicator set helps since stakeholders are not only interested in sustainability indicators
- Even if economic indictors are prioritized, scenarios with renewables have more advantages than others
- Next steps: Further extension of indicator set, modification of system boundaries

Thank you for your attention!

Contact: s.voegele@fz-juelich.de