# Are there interactions between a coal phase-out and the new battery capacities created by electric vehicles?



Christoph Kost, Andreas Palzer, Philip Sterchele

Fraunhofer-Institut für Solare Energiesysteme ISE

IAEE conference, September 3-6, Vienna

www.ise.fraunhofer.de

#### Research question

# Are there interactions between a coal phase-out and the new battery capacities created by electric vehicles?

#### Potential interactions:

- New demand for electricity
- Reduced electricity generation capacity
- CO<sub>2</sub> intensity of electricity -> Are electric vehicles green?
- Remaining coal: Pressure on system for available CO<sub>2</sub> emissions

Sector coupling: Electricity – (Heat) – Transport

Contribution is based on research in the BMBF research project "Kopernikus – ENAVI"

### Renewable Energy Model – Deutschland »REMod-D«

#### **REMod-D**

Renewable Energy Model – Deutschland

- Techno-economic optimization
- Based on system simulation
- Hourly time scale 2015-2050
- Objective: Minimize total annual cost





# **Methodology REMod**

Optimization of new installations, retrofit and replacement goal function: minimal cumulative total cost 2015-2050



#### Methodology

### Methodology REMod (extended)

- Complete path for total energy system is optimized
- Number of heating systems and vehicles is defined exogenously (=fully optimized)
- CO<sub>2</sub> cap
- Coverage of the model: Germany plus energy imports
- Demand and weather data of 2011, 2012, 2013
- Cost functions for all technologies
- Corridors for expansions for all tech.





### Key assumptions for German case

- Reduction of energy related CO<sub>2</sub>-Emissions: -85 % compared to 1990
- process heat in industry, electricity consumption in today's applications, number of car fleet & houses almost constant compared to today
- No import of electricity based fuels or other renewable fuels
- Biomass (ca. 290 TWh/a)
- Nuclear phase-out: 2022
- No CCS

# Analysis of CO2 emissions reduction scenarios with three options

- Analysis of the configuration of potential German energy systems by analyzing three scenario paths
  - -85% CO2 emission reduction with high share of electric vehicles and NO coal phase-out
  - (2) -85% CO2 emission reduction with high share of fuels and NO coal phase-out
  - (3) -85% CO2 emission reduction with high share of electric vehicles and coal phase-out

# Electric vehicles are main technology, exogenously calculated, however other technologies are also realistic choices

#### Car fleet in Germany, distribution of technologies in 2050 50 cars: battery electric 45 vehicle 40 cars: ice gas and battery 35 30 25 20 20 cars: hybrid ice fuel and battery cars: hybrid H2-FC and battery cars: fuel cell (H2) 15 10 cars: ice gas 5 cars: ice fuel

-85%+coal-out

-85%+PTL/G

ice = internal combustion engine

0

-85%

# Electricity generation capacity is strongly depending on sector coupling and role of coal



# Electricity use increases strongly with sector coupling! Dependency on transport sector.



# Cost of the development path depends a key drivers: coal phase out or technology choice in transport





### **Summary and conclusion**

- REMod approach shows impact between electricity sector and other sectors in a single model
- High temporal (hourly) resolution of technical interactions (2015 2050)
- Electric vehicles with direct use of electricity reduces size of electricity system
- Coal phase-out is necessary to use emission rights in other applications
- In general: Different Energiewende paths possible, but strong implications on the system

Extended analysis in ongoing BMBF research project "Kopernikus-ENAVI"

# Many thanks for your attention!













### Fraunhofer Institute for Solar Energy Systems ISE

Christoph Kost, Andreas Palzer, Philip Sterchele Cchristoph.Kost@ise.fraunhofer.de

www.ise.fraunhofer.de

**GEFÖRDERT VOM** 



