

Unilateral Policy Design against Carbon Leakage

(w/ Professor Knut Einar Rosendahl)

Kevin R. Kaushal
PhD candidate in Energy and Environmental Economics
Norwegian University of Life Sciences
School of Economics and Business

What is carbon leakage?

• Climate policy in one (group of) country may lead to increased emissions in other

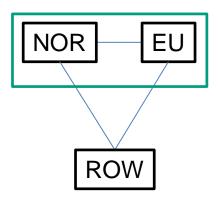
countries = Leakage

- Leakage rate:
- How much??

- Δ (Foreign emissions) 100%
- $-\Delta$ (Domestic emissions)
- Reduced climate benefit of climate policy
- Two main channels for leakage
 - Energy Market
 - Emission Intensive and Trade Exposed (EITE)

Focusing on the Emission Intensive and Trade Exposed

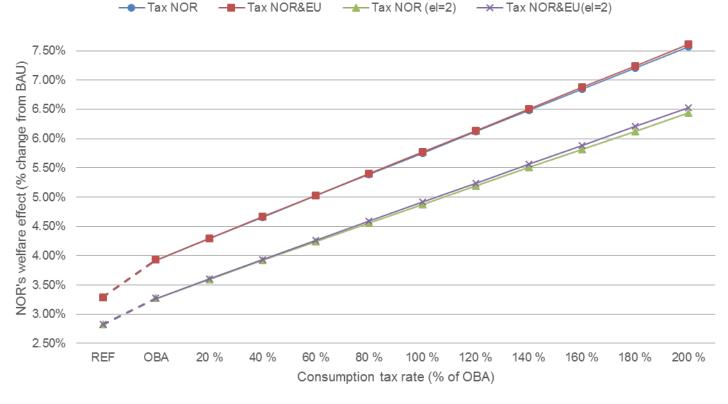
- Unilateral action -> carbon leakage(a result of other countries soft climate regulations)
- How to mitigate the carbon leakage in EITE sector?
 - Output-based allocation (OBA) -> (Allocation of free quotas linked to output)
- A quota market with Output-Based Allocation (OBA)
 - (Böhringer and Lange, 2005): OBA reduces leakage, but stimulates domestic production and acts as an implicit production subsidy
 - EU ETS: practicing free allocation of emission allowances for several years


Quota Market with Output-Based Allocation(OBA)

• In this paper:

- A subset of countries involved in this quota system may want to increase their effort to reduce carbon emissions
- examine the welfare effects of introducing a consumption tax on all use of EITE goods in a situation where a quota system has already been implemented, together with OBA on the EITE goods.
- There are papers examining consumption tax in environmental regulation
 - However, we look at multiple goods in an multi-sector and multi-region economy, with a subset of countries involved in the quota market
 - Paper builds on the basic model and findings in Böhringer et al. (2017)
- The motivation: current situation in Europe
 - Where the EU/EEA countries have set quite ambitious climate targets
 - EU institutions have responded enthusiastically to the Paris Climate Agreement outcome
 - However, significant political tension and different interests among the member states

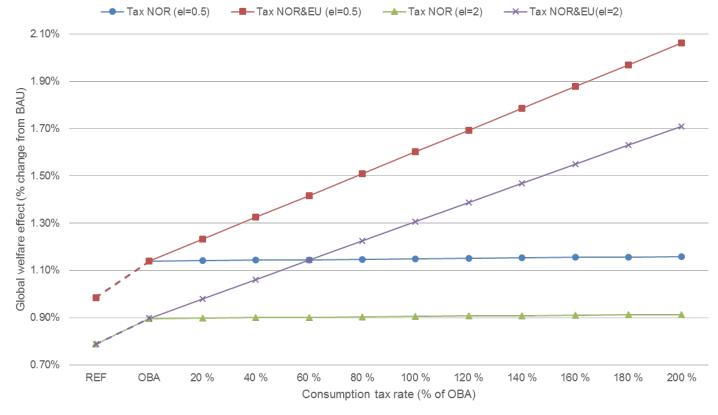
Model



• Regions NOR, EU and ROW:

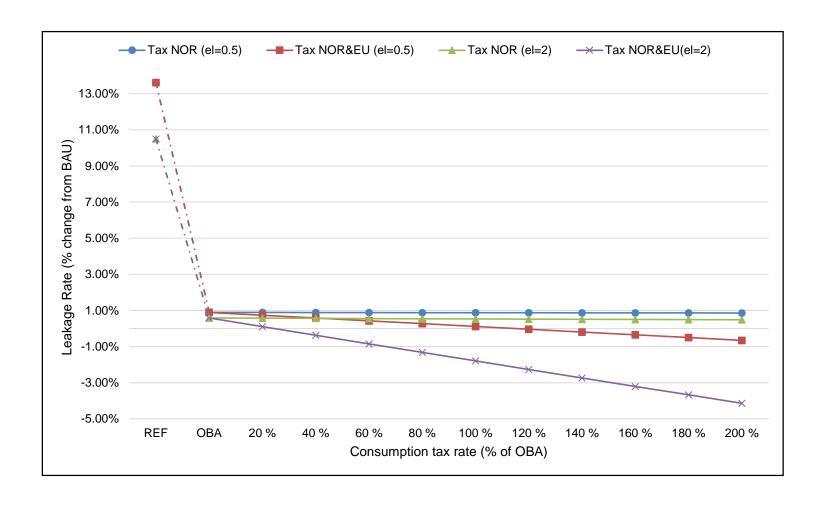
- Producers of same goods across regions are homogenous:
 - emission-free and tradable
 - emission-intensive and trade-exposed, the sectors where OBA is considered (e.g. metal and other mineral production)
 - emission-intensive and non-tradable, where leakage is not of concern (e.g. electricity production and transport)
- WIOD data (base-year 2009)
 - Emission reduction target at 20 percent of base-year emission for NOR and EU
 - Consumption tax introduced in NOR, a more stringent target
 - We use the standard calibration procedure in numerical simulation analysis, where base-year data information defines the fixed parameter values.

Welfare Effect in NOR



- The consumption tax w.r.t. subglobal welfare effect is unambiguously positive if:
 - the region is a net-importer of the Emission-Intensive and Trade-Exposed good.
 - joint emissions from sector y and z in region *i* are unchanged or increases
 - If either of these breaks, then it is unclear what that the regional welfare effect might be for region i

Global Welfare Effect



- The consumption tax in region *i* w.r.t to global welfare would be welfare improving when both region *i* and *j* have introduced an OBA-policy, and are part of the joint tradable emission market.
- We also find this when only region i has undertaken an environmental policy with OBA and introduces a consumption tax.

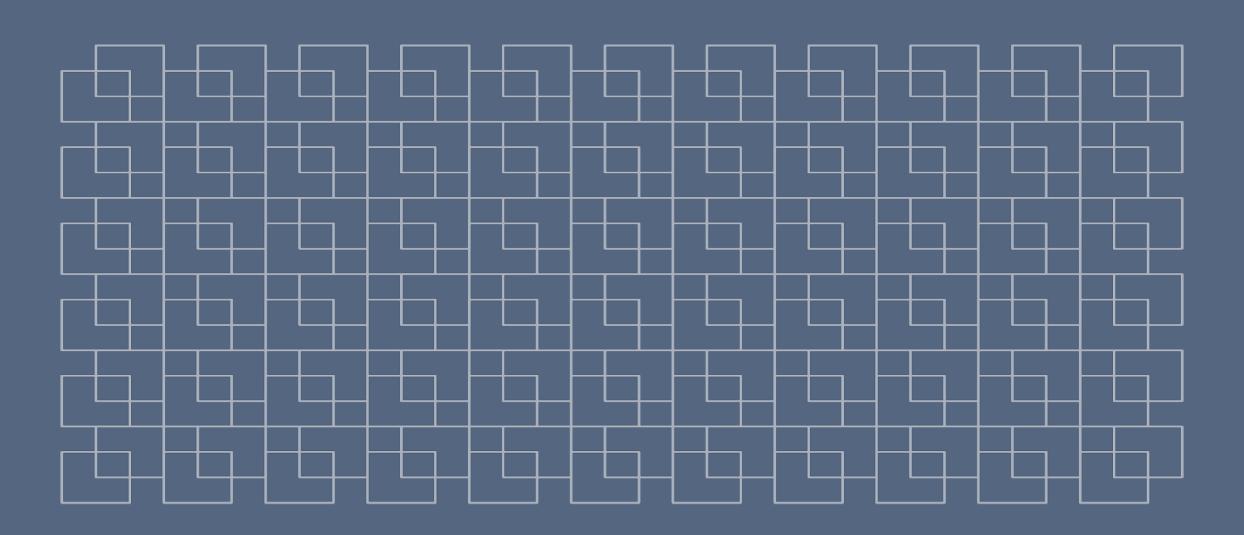
Numerical Simulation – Leakage Rate

Numerical Simulation – Welfare in other countries (Europe)

Country	Regional Welfare		
	REF	OBA	OBA & 100% consumption
Austria	3 %	3 %	5 %
Belgium	3 %	4 %	5 %
Bulgaria	18 %	23 %	26 %
Cyprus	36 %	42 %	44 %
Czech Republic	8 %	9 %	11 %
Germany	2 %	3 %	5 %
Denmark	7 %	8 %	10 %
Spain	2 %	2 %	4 %
Estonia	49 %	56 %	58 %
Finland	6 %	7 %	8 %
France	1 %	1 %	3 %
United Kingdom	3 %	3 %	5 %
Greece	7 %	9 %	11 %
Hungary	9 %	11 %	13 %
Ireland	4 %	5 %	6 %
Italy	2 %	2%	4%
Lithuania	25 %	29 %	32 %
Luxembourg	10 %	12 %	13 %
Latvia	30 %	35 %	37 %
Malta	66 %	76 %	77 %
Netherland	3 %	4 %	5 %
Norway	3 %	4 %	6 %
Poland	9 %	10 %	12 %
Portugal	5 %	6 %	8 %
Romania	11 %	13 %	16 %
Slovakia	8 %	10 %	11 %
Slovenia	19 %	22 %	24 %
Sweden	3 %	4 %	5 %

Concluding Remarks

- Theoretical analysis
 - Regional welfare improving effect under certain conditions
 - Global welfare effect is unambiguously positive
- Numerical simulation results
 - Positive welfare effect in Norway when introducing a consumption tax
 - Also if other EU/EEA countries introduce a consumption tax
 - Positive global welfare effect by introducing a consumption tax in EU/EEA countries
 - Reduced leakage rate and global emission


If the tax is set equal to the output-based allocation factors ("benchmarks"), the administrative cost of adding such a consumption tax will likely be limited (Neuhoff et al., 2016a; Ismer and Haussner, 2016). Böhringer et al. (2017) shows that the outcome of this combined policy will be equivalent to a certain variant of border carbon adjustments. Thus, combining output-based allocation with a consumption tax seems like a powerful policy strategy to mitigate carbon leakage, also for individual countries involved in a more extensive emission trading system

References

- Böhringer, C., Lange, A., (2005). On the design of optimal grandfathering schemes for emission allowances, European Economic Review. 49, 2041-2055.
- Böhringer, C., Rosendahl, K. E., Storrøsten, H. B. (2017). Robust policies to mitigate carbon leakage, Journal of Public Economics 149: 35–46.
- Ismer, R., Haussner, M. (2016). Inclusion of Consumption into the EU ETS: The Legal Basis under European Union Law. Review of European Community & International Environmental Law, 25 (1): 69-80.
- Neuhoff, K., Ismer, R., Acworth, W., Ancygier, A., Fischer, C., Haussner, M., Kangas, H., Kim, Y., Munnings, C., Owen, A., Pauliuk, S., Sartor, O., Sato, M., Stede, J., Sterner, T., Tervooren, M., Tusveld, R., Wood, R., Xiliang, Z., Zetterberg, L., Zipperer, V. (2016a). Inclusion of Consumption of carbon intensive materials in emissions trading An option for carbon pricing post-2020. *Climate Strategies: report may 2016*.

