

COALMOD World

Global Coal-Phase-Out and the International Coal Market: A Focus on Demand-side Policies in India

<u>Ivo Kafemann</u>, Franziska Holz, Casimir Lorenz, Roman Mendelevitch, Pao-Yu Oei, Tim Scherwath

Agenda

- 1. Global Coal Perspectives
- 2. Coal in India
- 3. Reference Scenarios
- 4. Model Structure
- 5. Results
- Conclusion

Global Coal Perspectives - Scenarios of Coal Consumption

Source: Mendelevitch et al. 2016; based on BP (2016), EIA (2016a), ExxonMobil (2016), IEA (2016), McGlade and Ekins (2015a), MIT (2015), and Statoil (2016).

Global Coal Perspectives - Scenarios of Coal Consumption

- Spread of projections illustrates uncertainty about future coal consumption
- Major drivers for differences in scenarios:
 - Potential of renewable energy sources and storage
 - structural changes in the energy system (e.g. higher electricity demand due to sector coupling)
 - CCTS employment
 - Macro-economic trends and total energy demand
 - Policy measures (e.g. carbon price)

Global Coal Perspectives – The Global Steam Coal Market

Overview of world steam coal market: supply, demand, trade

Major producers in 2014

China (3,200 Mt)

United States (770 Mt)

India (560 Mt)

Indonesia (470 Mt)

World production 6,150 Mt

Major consumers in 2014

China (3,280 Mt)

India (760 Mt)

United States (750 Mt)

World consumption 6,090 Mt

Source: IEA 2016b.

Global Coal Perspectives – Regional Changes 2015-2040

- Climate pledges by EU, US and China result in coal demand decrease
- Increasing coal demand mainly in India and Southeast Asia

Source: IEA/OECD (2016), p. 212.

Coal in India – Current status

- Coal consumption in power generation: 81 %
- installed capacity of steam coal power plants: 176 GW → 60% of total capacity
- Steam coal consumption 2015: **753 Mt**
- Steam coal production 2015: 585 Mt
- Imports by power utilities: 22 % of their total coal consumption
- thermal coal imports 2015: 168 Mt
- main exporters
 - Indonesia (125 Mt)
 - South Africa (35 Mt)
 - Australia (8 Mt)
 - Russia (3 Mt)
 - United States (2 Mt)

Sources: Cornot-Gandolphe (2016), IEA/OECD (2016), IEA/OECD (2016b).

- " [...], it is more than ever **environmental policies** that determine the evolution of regional coal demand." (IEA (2016), p. 212)
- Specific policies also affect international steam coal trade

Policy	Measures
objective	

Policy objective	Measures
Expansion of RES	• New RES policy: Capacity expansion solar, wind

Policy objective	Measures
Expansion of RES	• New RES policy: Capacity expansion solar, wind
Coal self- sufficiency	• Higher domestic production (target 1500 Mt)

Policy objective	Measures
Expansion of RES	• New RES policy: Capacity expansion solar, wind
Coal self- sufficiency	• Higher domestic production (target 1500 Mt)
Reduction of air pollution :	Burning coal with lower ash contentWashing

Policy objective	Measures
Expansion of RES	• New RES policy: Capacity expansion solar, wind
Coal self- sufficiency	• Higher domestic production (target 1500 Mt)
Reduction of air pollution :	Burning coal with lower ash contentWashing
Efficiency increase	 Plants based on supercritical technology

Policy objective	Measures	Considered in Scenarios by
Expansion of RES	• New RES policy: Capacity expansion solar, wind	 Different reference coal demand based on: IEA NPS, IEA 450, ECT2
Coal self- sufficiency	• Higher domestic production (target 1500 Mt)	 Import tax Import restriction Minimum required imports of 65 Mt
Reduction of air pollution:	Burning coal with lower ash contentWashing	• Not considered
Efficiency increase	 Plants based on supercritical technology 	 Quality Standard for imported coal Minimum required imports of 65 Mt

Reference Scenarios – Global Coal Consumption

Global Coal Consumption by Scenario

The Setting

Represented countries by type:

- 40 consumption nodes (C), 25 producers (P), and 14 exporters (E)
- Multi-period model with yearly equilibria in 5-years-steps from 2010 to 2050
- Demand in energy services from coal vs. cost in \$/t makes the cost-efficient equilibrium solution non-obvious

Results

Results – Scenario Overview

	NPS	450ppm	450ppm but India ECT2
Import Tax			
Quality Standard			
Import restriction			

Results – Import Tax

Indian Imports: Reference Scenario vs. Import Tax (10 \$/t)

Results - Quality Standard

Indian Imports: Reference Case vs. Quality Standard (Calorific value of 22.9 GJ/t)

Results – Quality Standard

Indian Imports: Different Quality Standards (Minimum Calorific Value of 22.9 GJ/t vs. 23.1 GJ/t)

Results – Import Restriction

Indian Imports: Reference Scenario vs. Import Restriction (65 Mt)

Conclusion – General Observations

- NPS: Import dependency due to domestic bottlenecks and rapidly increasing demand
- ECT2 and 450: less import dependency due to lower demand

Policies:

- Tax: decreasing imports; increasing domestic production; trend continues with an increasing tax
- Quality Standard: does not reduce imports → only different exporters dependent on quality standard
- Import Restriction: domestic production increases by ~
 100 Mt (NPS) and ~ 50 Mt (India ECT2 and 450 ppm)

Conclusion – Indonesia

- Tax: Loss of market share in India is compensated by increasing exports to China
- Import restriction: loss of market share in India is compensated by increasing exports to China
- Quality standard: loss of market share in India is compensated by increasing exports to China, Taiwan and Philipines

Conclusion – South Africa

Tax:

low tax: Exports decrease slightly (20 Mt) higher tax: loss of market share in India compensated by Malaysia, Thailand and China

Import restriction:

- In NPS: high decrease of exports → 50 % less exports ~ 60 Mt;
 losses partly compensated by China, Thailand and Malaysia
- ECT2 India and 450: slight decrease of exports
- Quality standard: if cv > 23 → India market is lost, compensated by China, Malaysia, Thailand and Latin American Countries

COALMOD Results: Analysis of Key Drivers

FOB costs (2010) for the export countries

Source: Mendelevitch et al. (2016) bases on Baruya (2007).

COALMOD Results: Analysis of Key Drivers

References

- Adani Mining Pty Ltd (2013): Carmichael Coal Mine and Rail Project SEIS, Report for updated mine project describtion
- P. Graham, S. Thorpe, and L. Hogan (1999): Non-competitive market behaviour in the international coking coal market, *Energy Economics* 21(3), 195-212.
- C. Haftendorn, F. Holz, C. Kemfert, and C. von Hirschhausen (2013): Global Steam Coal Markets until 2030 Perspectives on Production, Trade, and Consumption under Increasing Carbon Constraints. In: R. Fouquet (Ed.) "Handbook on Energy and Climate Change", 103-122, Edward Elgar Publ.
- C. Haftendorn, C. Kemfert, and F. Holz (2012): What about Coal? Interactions between Climate Policies and the Global Steam Coal Market until 2030. *Energy Policy* 48, 274-283.
- C. Haftendorn (2012): Evidence of Market Power in the Atlantic Steam Coal Market Using Oligopoly Models with a Competitive Fringe. *DIW Discussion Paper* 1185.
- C. Haftendorn, F. Holz, and C. von Hirschhausen (2012): The End of Cheap Coal? A Techno-economic Analysis Until 2030 using the COALMOD-World Model. *FUEL* 102, 305-325.
- C. Haftendorn and F. Holz (2010): Modeling and Analysis of the International Steam Coal Trade. *The Energy Journal* 31 (4), 201-225.
- IEA. 2012. Coal Information 2012. Coal information. OECD Publishing. http://www.oecd-ilibrary.org/energy/coal-information-2012_coal-2012-en.
- IEA. 2016. World Energy Outlook 2016. Paris, France: International Energy Agency. http://www.oecd-ilibrary.org/energy/world-energy-outlook-2016_weo-2016-en.
- F. Holz, C. Haftendorn, R. Mendelevitch, and C. von Hirschhausen (2015): COALMOD-World: A Model to Assess International Coal Markets Through 2030. In: M.C. Thurber and R.K. Morse (Eds.) "Asia and the Global Coal Market", Cambridge Univ. Press.
- R. Mendelevitch (2016): Testing Supply-Side Climate Policies for the Global Steam Coal Market Can They Curb Coal Consumption?, *DIW DP 1604*.
- R. Mendelevitch, F. Holz, C. von Hirschhausen, C. Haftendorn (2016): A Model of the International Steam Coal Market (COALMOD-World), DIW Data Doc 85.
- P.M. Richter, F. Jotzo, and R. Mendelevitch (2015): Market Power Rents and Climate Change Mitigation: A Rationale for Coal Taxes?, *DIW DP 1471*.
- J. Trueby (2013): Strategic Behaviour in International Metallurgical Coal Markets, Energy Economics, vol. 36(C), 147-157.
- J. Trueby and M. Paulus (2010): Have Prices of Internationally Traded Steam Coal been Marginal Cost Based? *EWI Working Paper 2010-5*.
- J. Trueby and M. Paulus (2012): Market Structure Scenarios in International Steam Coal Trade, *The Energy Journal* 33(3), 91-123.

