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Introduction

• The electric power sector is expected to be the linchpin of  efforts to 
reduce GHG emissions

• Many recent studies have explored pathways to “deep decarbonization” 
of  the power sector, defined as 80-100% reduction in CO2 emissions

• This review takes stock of  several insights emerging from this recent 
literature



Approach

• Review and distill insights from 36 deep decarbonization studies all 
published since 2014

• Half  depend exclusively on renewable energy sources to reach low 
carbon goals; other half  harness additional technologies such as nuclear 
and CCS

• A subset of  15 multi-sector or economy-wide studies included in review
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Insights

• Economy-wide studies all envision electricity supplying greater shares of  heating, 
industry, and transportation energy demand by 2050 

• Achieved either by direct electrification of  end-uses or by producing electrolytic 
hydrogen or synthetic natural gas 

• Finding affordable and feasible routes to decarbonize the power sector thus has 
outsized importance in global climate mitigation

1. The power sector must cut CO2 first and furthest while 
expanding to electrify other sectors



Insights

• Reducing power sector CO2 emissions by one-half  to two-thirds can be readily 
achieved, while reaching zero emissions necessitates rapid expansions of  zero-
carbon resources 

• Lowest-cost portfolio suited to moderate emissions reductions may differ from 
portfolio suited to deep decarbonization

• If  power generation resources are built without considering long-term objectives, 
costly “lock-in” of  a sub-optimal portfolio is possible 

2. Deep decarbonization is more difficult, and requires a different 
technology mix, than more modest CO2 reductions



Insights
2. Deep decarbonization is more difficult, and requires a different 
technology mix, than more modest CO2 reductions

Data from de Sisternes et al. (2016)



Insights
3. Deep decarbonization is possible with RE alone, but challenges 
rise steeply as RE penetration approaches 100% 



Insights

• Very high shares of  wind and solar entail significant curtailment of  excess 
renewable energy—even with energy storage, transmission, or demand response

3. Deep decarbonization is possible with RE alone, but challenges 
rise steeply as RE penetration approaches 100% 

Total system electricity consumption/generation

Frew et al. (2016), 80% RE, 5% curtailment

Riesz et al. (2015), 80% RE, 6-9% curtailment

Fernandes & Ferreira (2014), 100% RE, 30% curtailment

Frew et al. (2016), 100% RE, 37-48% curtailment



Insights

• Most wind and solar-heavy power systems include “shadow systems” of  
dispatchable power capacity to ensure demand can be met at all times 

• Scenarios that do not rely upon such “shadow systems” must instead rely on long-
duration seasonal energy storage (not battery storage)

3. Deep decarbonization is possible with RE alone, but challenges 
rise steeply as RE penetration approaches 100% 



Insights
3. Deep decarbonization is possible with RE alone, but challenges 
rise steeply as RE penetration approaches 100% 

One week’s worth of  U.S. electricity consumption (for reference)

Eight weeks’ worth of  U.S. electricity consumption (Becker et al. 2014, low end)

12 weeks’ worth of  U.S. electricity consumption 
(Becker et al. 2014, high end)

12 weeks’ worth of  U.S. electricity consumption 
(Jacobson et al. 2015, low end)

13 weeks’ worth of  U.S. electricity consumption 
(Jacobson et al. 2015, high end)



Insights

• High renewable energy scenarios also envision a significant expansion of  long-
distance transmission

v Mai et al. (2014): 56-105% increase in U.S. long-distance transmission capacity

v MacDonald et al. (2016): 20,000 miles of  new HVDC transmission in U.S.

v Pleßmann & Blechinger (2017): 4.5-fold increase in transmission 
interconnection between E.U. regions

v Knorr et al. (2014): 27,500 kilometers of  HVDC transmission in Germany 

3. Deep decarbonization is possible with RE alone, but challenges 
rise steeply as RE penetration approaches 100% 



Insights
4. A diversified portfolio of  low-carbon resources offers the best 
chance of  affordably decarbonizing the power system
• Costs of  systems utilizing only RE rise steeply as RE approaches 100%

• Decarbonization scenarios that harness more diverse portfolios are less costly

v Brick and Thernstrom (2016): Portfolios including RE, nuclear, and CCS cost 68-75% less 
than renewables-centric systems in Wisconsin, California, and Germany 

v Williams (2015): High-RE pathway for deep decarbonization of  the U.S. costs 1.6 times more 
than a diversified low-carbon portfolio

v Mileva et al. (2016) and de Sisternes et al. (2016): Scenarios including dispatchable low-carbon 
resources reach deep decarbonization goals at lower cost than those relying primarily on wind 
and solar  



Summary

• Despite a wide variety of  analytical methods, goals, and scopes, there is 
strong agreement that a diversified mix of  low-carbon resources offers 
the best chance of  affordably decarbonizing the power system

• Dispatchable low-carbon resources appear to be a virtually indispensable 
part of  the most affordable pathways to zero or near-zero CO2

emissions


